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An augmented reality (AR) smartglass display combines
real-world scenes with digital information enabling the
rapid growth of AR-based applications. We present an aug-
mented reality-based approach for three-dimensional (3D)
optical visualization and object recognition using axially
distributed sensing (ADS). For object recognition, the 3D
scene is reconstructed, and feature extraction is performed
by calculating the histogram of oriented gradients (HOG)
of a sliding window. A support vector machine (SVM) is
then used for classification. Once an object has been iden-
tified, the 3D reconstructed scene with the detected object is
optically displayed in the smartglasses allowing the user to
see the object, remove partial occlusions of the object, and
provide critical information about the object such as 3D
coordinates, which are not possible with conventional AR
devices. To the best of our knowledge, this is the first report
on combining axially distributed sensing with 3D object
visualization and recognition for applications to augmented
reality. The proposed approach can have benefits for many
applications, including medical, military, transportation,
and manufacturing.  © 2016 Optical Society of America

OCIS codes: (100.6890) Three-dimensional image processing;
(110.0110) Imaging systems; (100.5070) Phase retrieval.
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Unlike virtual reality, which completely immerses a user in a
virtual world, augmented reality takes a real-world scene and
superimposes virtual objects into the scene [1]. There are a
myriad of applications for this, including medical [2], commer-
cial [3], and manufacturing [4]. Recently, an emerged form of
augmented reality device is smartglasses. These glasses allow a
user to view a real-world scene through glasses that also contain
a camera and a small digital display. This display allows the vir-
tual information to be combined with the real world. Figure 1 is
a schematic illustration of a typical optical see-though head
mounted display. An eyepiece magnifies the microdisplay to
create a magnified virtual display located at a comfortable
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viewing distance. A beam splitter is inserted between the
eyepiece and viewer’s eye to combine the light from the virtual
display and the real-world scene. Recently, there has been inter-
est in combining AR with 3D imaging [5,6] to create a true 3D
image source in place of a two-dimensional (2D) microdisplay.
In [5], a real 3D AR micro integral imaging display system was
developed by combining integral imaging with augmented real-
ity. In [6], a micro-integral imaging unit feeds an optically re-
constructed 3D scene as the image source to a freeform eyepiece
optics, which demonstrates the ability to create a compact, true
3D optical see-through head-mounted display.

In this Letter, we present a method to integrate augmented
reality viewing devices such as smartglasses with 3D axially dis-
tributed sensing (ADS) [7] to enable a variety of applications,
including visualization of occluded objects and 3D object rec-
ognition which are not possible with conventional augmented
reality devices. Using the 2D camera on a pair of see-through
head mounted displays such as smartglasses, 3D ADS is imple-
mented to digitally perform a 3D reconstruction of the scene
which may contain an object behind occlusion. The recovered
occluded object can be detected, identified, and/or displayed for
the viewer with various details such as 3D coordinates superim-
posed onto the scene. Three-dimensional object recognition is
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Fig. 1. Typical optical see-through head mounted display.
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petformed by sliding a window over the reconstructed scene at a
particular depth. For each window, the histogram of oriented
gradients (HOG) features are extracted and support vector ma-
chines (SVM) are then used to detect the object, along with a
probability estimate used to determine the optimal window and
reconstruction distance or object range. Various types of complex
3D information could be extracted from the scene and displayed
in the smartglasses allowing the user to view the 3D scene with
the scene or objects unobstructed by obscurations.

Axially distributed sensing (ADS) [7] is a passive sensing 3D
imaging technique that captures a scene by moving a camera at
different depths along its optical axis which is perpendicular to
a 3D scene. Each captured 2D image, known as an elemental
image (EI), is then used to reconstruct the 3D scene. Figure 2
depicts an example of the ADS pickup and reconstruction stages.
A camera captures 2D images of a 3D scene at multiple distances
along its optical axis with a step of AZ, as shown in Fig. 2(a). For
the reconstruction process, as shown in Fig. 2(b), a reference
camera position is set at the first capture position (Cp). With
the pinhole model, the distance between the pinhole and cap-
tured elemental image is g. Pixels on each captured EI can be
mapped into multiple planes in the 3D space to reconstruct
the 3D scene. Mathematically, 3D reconstruction is [7]

1,,(x,7) 1§&(X y) here M, =22 (1)
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K&<""\M," M, Z,

where K is the total number of the elemental images obtained by
the ADS pickup process, /, is the nth elemental image, (x, y) is
the pixel index, M, is the relative magnification of the 7th image
with respect to the closest image, Z, is the initial distance of the
camera from the scene, and 7, is the distance of the camera
when it is at position 7. To detect an object in a 3D recon-
structed scene, the following approach was implemented. A slid-
ing window over the scene was used, and feature extraction for
that window was performed by computing the histogram of ori-
ented gradients (HOG) [8]. Support vector machines (SVM) [9]
then used the HOG features for object classification. Probability
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Fig. 2. 3D axially distributed sensing (a) pickup and
(b) reconstruction process.
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estimates from the SVM classifier were then used to determine
the optimal sliding window for the detected object.

A histogram of oriented gradients observes the distribution
of local intensity gradients or edge detection. To implement
HOG, the gradients are computed on the 2D grayscale image
I using a 1D kernel in the x and y directions as [, =7 ®
[-1 0 1] and [,=7/Q®[-1 0 117, respectively,
where ® denotes convolution and /., and 7, denotes the gra-
dient of the image in the x direction and y direction, respec-
tively. These convolutions are used to detect edges in the x and
y directions. The magnitude, M, and gradient direction, a, are

then computed for each pixel as M = (/(1,)* + ([J,)2 and

a = arctan(/,/1,).

Once the gradients have been calculated, cell histograms are
computed to generate gradient vectors. The image is divided
into small connected regions known as cells. An image is bro-
ken into multiple cells which consist of 8 x 8 pixels. A block
which can be a 2 x 2 cell is then formed.

Each cell then accumulates a weighted local 1D histogram
based on the gradient directions, . A weighted vote from each
pixel in the cell is placed into bins corresponding to their angles.
The final step is to form descriptor blocks by normalizing the
histogram gradient for each cell by the “energy” over the cells
in a block. For example, to normalize a2 x 2 cell block, the nine-
bin histogram for each cell is used, resulting in 36 features for this
block. The block is then normalized, such as using the L,-norm

defined as v < v/+/||v||5 + & where v is the block to be nor-
malized, € is an arbitrary small constant term to ensure that the
denominator does not go to zero, and || - || is the L,-norm.

The normalization allows the HOG features to be more
robust to illumination conditions. The block then moves to
the right one cell or down one cell; thus, the blocks overlap.
Figure 3 depicts an example of the HOG features computed
for a car. Figure 3(a) depicts the original image which is
900(H) x 400(V) pixels, while Fig. 3(b) shows the correspond-
ing HOG features.

Support vector machines [9,10] seek to find the optimal
separating hyperplane between the true and false classes were
used for classification. Let us define a training vector with 7
dimensions as x; € R” where 7 = 1, ..., IV, and NV is the total
number of data points. We also define an indicator vector
y € RY such that y; € {-1, 1} which defines 1 if a data point
exists in class 1 and -1, if it belongs in class 2. We wish to find
the optimal linear line that separates class 1 from class 2.

For classification, we use SVM [9-11]. We wish to mini-
mize the primal optimization problem:
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Fig. 3. (a) Image of a 900(H) x 400(V) pixel car. (b) HOG feature.
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where w is a vector of coefficients, & is an unknown constant used
to determine the offset of the hyperplane, &; are positive slack
variables to deal for permitted errors in classification, ¢(x;) is
a nonlinear mapping of x; to a higher-dimensional space, C
is a penalty parameters, and N is the number of training cases.

It can be shown that the decision function for a sample x is

N

sign <Z.yiai[((xi’ x) + b); (3)
=1

where a, are the Lagrange multipliers found by optimization,

sign is the sign function, K (x;, x) is the kernel function, and 4

is a known constant. In our experiments, the radial basis func-

tion (RBF) kernel was used. This kernel is

K(x;x) = p(x) " p(x) = exp(-rllx; - x[1?),  (4)

where y is some constant scaling parameter.

In [11], a method to generate probability estimates for SVM
classification results was derived. This is conveniently incorpo-
rated into the LIBSVM [10] software which was used for SVM
classification in our experiments. The Epson Moverio BT-200
smartglasses were used to perform the ADS experiment. The
native smartglasses camera has a resolution of 640(H) x
480(V) pixels creating a relatively low resolution image. A
higher resolution mini camera was used as a replacement to
generate high-resolution images. The camera used was a
1/3" CMOS color camera which has a pixel resolution
of 1600(H) x 1200(V) and sensor size of 4.48 x 3.36 mm.
Moreover, the focal length used was 8 mm, and the physical
dimension of the camera was 36 x 36 x 20 mm. A camera
holder for the mini camera was created using a 3D printer
and placed on the smartglasses, as shown in Fig. 4. The scene
used was a police car occluded by pine needles as shown in
Fig. 4. The AR glasses with the 3D printed camera holder
and camera were placed on a translation stage. The number
of elemental images captured was 25, and reconstruction
was performed offline. Figure 5(a) depicts one of the captured
elemental images. ADS reconstruction was then performed.
Figure 5(b) depicts a 3D reconstruction of the scene at
z = 980 mm. Note that in the 3D reconstruction, the letters
“POLICE” are visible, whereas they are occluded in Fig. 5(a).

Once reconstruction was performed for a distance d, the
following process was used to locate the object of interest: a
rectangular window of width w and height h was slid across
the scene. For each window, the HOG feature was computed
and classified using SVM, along with the probability estimate.
The SVM model, which was built using 10 true class and 10
false class images, was split in half for testing and training. In
addition, ten-fold cross validation was used to find the best
model parameters. It was found that an RBF kernel with a
standard deviation of 0.7 was sufficient. Once the car was de-
tected in the window, the coordinates of the top left pixel and
bottom right pixel of the window are stored. The probability
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Fig. 4. ADS experimental setup with AR glasses and camera.
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Fig. 5. Comparison of (a) 2D elemental image and (b) 3D recon-
structed image at a distance of 980 mm obtained by ADS.

estimate for that window was also recorded. After the window
has searched the scene, the optimal window is found which
corresponds to the window that resulted in the maximum
probability estimate from the SVM model. We note that in
this experiment the conventional 2D imaging failed to detect
the occluded car; however, the occluded car was successfully
detected using the proposed 3D approach.

The classification scheme was also performed over different
image scales to find a window that closely matches the object.
One approach is to upscale or downscale the image generating
an image pyramid as shown in Fig. 6. Note that scaling is done
by using the bicubic interpolation [12], and no image blurring
is performed. At each scale, a window is slid across the scene,
and the optimal window is found if the object is in the scene.
The location of the window in the scene, the probability esti-
mate, and the image scale value are then recorded. Observing
the image over all scales, the maximum probability estimate is
used to indicate the ideal scale for the image and generating a
box that closely matches the object.

Another issue is finding the ideal reconstruction distance.
Thus, the object recognition scheme is then repeated for every
desired reconstruction distance. Probability estimates for the
optimal window is then compared among the optimal window
for other reconstruction distances. The window that produces
the highest probability estimate is then assumed to be the ideal
reconstruction distances. For example, using the scene in our

Fig. 6. Ideal size of the window is found by resizing the image
followed by scaling the window appropriately once the ideal window
size has been found.
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Fig. 7. Object recognition with 3D ADS for augmented reality.
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Fig. 8. 3D augmented reality experimental results with unknown
sensor positions. (a) 3D reconstructed image at 980 mm by ADS with
unknown sensor positions. (b) ADS 3D object recognition combined
with augmented reality.

experiments, it is difficult to determine where the best object
reconstruction distance is for distances of 960-990 mm. By
using the window associated with the highest probability esti-
mate from the SVM, it was found that the optimal window
was at z = 980 mm with a probability estimate of 0.1924. An
overview of the classification scheme is shown in Fig. 7.

In practice, it may not be possible to know the exact camera
positions. Thus, we performed 3D computational reconstruction
with unknown sensor positions [13]. The 3D reconstructed
image at 980 mm using ADS with unknown sensor positions
is shown in Fig. 8(a). To evaluate the performance of the 3D
reconstruction with unknown sensor positions, the root mean
squared error (RMSE) [14] was computed between the 3D
reconstruction of the car shown in Figs. 5(b) and 8(a). The re-
constructed images were normalized between [0,1] prior to com-
puting the RMSE (\/ S SN (G - x47)/ (M) which
was 0.0169. The 3D reconstruction with object recognition was
then combined with augmented reality. Figure 8(b) depicts the
scene combined with augmented reality information. The user
can identify the car with occlusion removal, along with approx-
imately how far it is from the user.

In conclusion, we have presented an approach to integrate
augmented reality with a 3D imaging technique known as
axially distributed sensing (ADS). This can be useful for a
variety of complex applications such as visualization and object
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recognition, including in the presence of partial occlusion in
the scene. In our experiments, ADS was used to create a 3D
reconstruction of a scene containing an object (car) behind
occlusion. At a given reconstruction distance, the histogram of
oriented gradients (HOG) feature was computed for the image
region inside a sliding window. Using the HOG features, a sup-
port vector machine (SVM) was then used to classify the window
and determine if the object was present in the scene. Moreover,
the probability estimates obtained from the SVM were used not
only to find the best window for the target, but also the optimal
reconstruction distance. Once the object has been identified,
it was placed in a smartglasses display that overlooks the scene
with the occluded object. Thus, a user can visually see the object
with occlusion removal, along with the approximate distance
that the object is from the user. While we have used ADS, a
variety of other 3D imaging approaches may be used [6,15-19].
Likewise, other object recognition algorithms may be employed
for detecting and recognizing the object.
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