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Abstract:We experimentally demonstrate the possibility of reconstructing 3-D scenes using
integral imaging from very photon-starved scenes. It is shown that by using an iterative
reconstruction algorithm, it is possible to reconstruct 3-D objects captured with an optical
signal just above the CCD image sensors’ noise level. Three-dimensional scene
reconstruction with integral images with only a few photons per pixel of the image sensor
is demonstrated. Optical experimental results are presented.

Index Terms: Image reconstruction, integral imaging, 3-D imaging.

1. Introduction
Integral imaging [1]–[24] is a passive 3-D imaging technique with continuous view point based on the
concept of integral photography introduced more than a century ago by G. Lippmann [10]. With
integral imaging, multiple views of a 3-D object are captured with an array of apertures, typically
implemented by means of a lenslet array or an array of cameras. Each aperture generates a specific
view image referred to as an elemental image, and the entire set of elemental images captured is
referred to as an integral image. The integral imaging process is described in Section 2.1.

The integral imaging acquisition process is shown in Fig. 1(a). The capturing process may be
viewed as amultichannel acquisition process, where each channel generates an elemental image. As
such, there is a large redundancy in the captured data permitting various tasks besides basic 3-D
visualization, such as imaging through occlusion [11]–[13], 3-D object recognition [1], and 3-D data
extraction with very few photons in the scene [14]–[20]. Several works have recently demonstrated
that 3-D image visualization [15], [20] and 3-D target recognition [14], [17]–[19], [21] are theoretically
possible from extremely low number of photons captured with integral imaging, which can be
implemented using photon-counting detectors. However, photon-counting image sensors, in general,
are very expensive andmay be available with only a limited number of pixels. Therefore, in this paper,
we address a more robust case; that is, the reconstruction of 3-D objects captured with integral
imaging using conventional (CCD or CMOS) sensors under very low light conditions. We investigate
the ability to reconstruct computationally 3-D objects in photon-starved conditions, that is, with
irradiance impinging the CCD sensors that is only slightly above the noise levels. Due to the inherent
noise of the CCD and CMOS cameras, a larger photon flux is necessary; however, we show that it is
possible to reconstruct 3-D images form elemental images with a signal-to-noise ratio (SNR) much
lower than 1 by applying appropriate iterative reconstruction algorithms to estimate the original data.

The paper is organized as follows. In Section 2.1, we give a short description of the integral imaging
process together with the conventional model used for reconstruction of 3-D images from integral
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images captured with regular illumination. Next, in Section 2.2, we present the reconstruction
algorithm used for visualization of 3-D images from photon-starved integral images. In Section 3, we
show simulation and real optical experimental results. Finally, we conclude in Section 4.

2. Computational Integral Imaging Reconstruction

2.1. Computational 3-D Image Reconstruction by Back Projection
The 3-D imaging process with integral imaging is depicted in Fig. 1. Fig. 1(a) shows the image

capturing process. Each aperture, located at node ðp; qÞ of a rectangular grid, captures an
elemental image. The reconstruction can be performed optically or computationally [1]. The
common computational reconstruction method is by digitally inverse mapping the elemental images
[see Fig. 1(b)]. Technically, this is a straightforward process involving summation of the back
projections of each elemental image and normalization according to the number of elemental
images contributing to each reconstructed voxel. Note that the back projections depend on the
lateral magnification M ¼ �ðzi=zoÞ; thus, it must take into account the reconstructed object plane
zo. Hence, by means of controlling M , the reconstruction can be focused at different object planes
(different ranges in the scene). For instance, in Fig. 1(b), the reconstruction is focused on plane z1.
This approach has been used in previous works (see for example [15], [22], and [23]) yielding
satisfactory results for integral images captured with regular illumination conditions. Here, we

Fig. 1. Schematic of integral imaging setup. (a) Integral imaging scene acquisition. (b) Optical or
conventional computational reconstruction. Three sample elemental images from a column of the
integral image are shown together with their back projection to plane located at depth z1.
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address the problem of computational reconstruction of integral images captured under extremely
low illumination in the scene, which requires applying more sophisticated reconstruction algorithms.

In the following, we shall adopt an operator formalism to describe the imaging and back-
projection process [20]. The imaging process in Fig. 1(a) can be described with an operator
formalism as g ¼ Hf , where H is the forward propagation operator, and f and g are vectors
describing the object and the image plane pixels in a lexicographic order, respectively. Technically,
the operator H can be implemented as a matrix or as a function handle (procedure) that maps each
pixel from the object plane to the image plane. The back-projection operator is simply the adjoint
operator, HT, so the conventional inverse mapping method can be formulated as applying HT on
the captured integral images; f bp ¼ HTg, where the superscript Bbp[ stands for back projection.

In one example, the input scene g is shown in Fig. 2(a). The integral image was captured by
placing a camera at the nodes of a 7 � 7 array with horizontal and vertical pitch size of 50 mm. We
used a 16-bit cooled camera (DTA model DX-1600E). As objects, we used a toy truck located
approximately 50 cm from the camera plane and an airplane that was at a distance of approximately
70 cm. Fig. 2(b) and (c) shows examples of reconstruction of two planes of the scene by
conventional back projections f bp ¼ HTg from the integral image.

2.2. Computational Integral Imaging 3-D Image Reconstruction of a Scene Captured
in Extremely Low Illumination Conditions
In the case of integral images captured with very low input scene SNR considered here, the

acquisition process can be modeled by

g ¼ Hf þ n; (1)

where n is the acquisition noise and has an intensity much larger than that of the signal. Such an
acquisition model is extremely ill conditioned; therefore, conventional back projection, that is
f bp ¼ Hg, cannot give good results. In order to handle this problem,we use an iterative reconstruction

Fig. 2. (a) Integral image consisting of 7 � 7 elemental images captured with large photon flux
illumination. Reconstruction of the object planes at distances ðz1Þ of 50 cm in (b) and 70 cm in (c).
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algorithm designed for the statistical model of the acquisition process and that incorporates efficiently
priors about the object. Iterative algorithms were used previously for computation integral image
reconstruction in [20] and [24]. In [24], a sparsity-promoting reconstruction algorithm is used to
increase the resolution and decrease superposition artifacts. This kind of algorithms were found to
be very effective in compressive imaging for space-bandwidth extension [25] and for 3-D holography
[26]; however, their performance is limited when applied to images with very poor SNR [27]. Here,
we use the penalized maximum-likelihood expectation maximization (PMLEM) reconstruction
algorithm, which we found very effective in our previous study [20]. The PMLEM iteration step is
given by

f̂
ðkþ1Þ ¼ f̂

ðkÞ

sþ � �Pf̂
ðkÞ �H

T � g

H � f̂ ðkÞ
; (2)

where g is a lexicographic vector representing the elemental images data, f̂
ðkÞ

is the reconstructed
image vector at k 0th iteration, H is the forward operator that represents the forward projection, HT

represents the backward projection, and s is the sensitivity vector with elements sj ¼
Pm

i¼1 hi ;j ,
j ¼ 1; . . . n, where hi ;j is the i , j 0th element of the matrix H, accounting for the number of elemental
images contributing to reconstruction of the point. P is the penalty operator, and � is a constant
controlling the amount of regularization. The division in (2) should be taken as Hadamard division
(component-wise division). Without any penalty, i.e., with � ¼ 0, the PMLEM algorithm (2) reduces
to maximum-likelihood expectation maximization or to Richardson–Lucy algorithm, which are well
known for their efficiency in other photon-starved imaging modalities (e.g., [28]–[30]). The penalty P
operator regularizes the reconstruction, thus improves the robustness. Here, we use the total-
variation (TV) penalty, which was found in [20] significantly outperforming other penalties. The TV
penalty for PMLEM is given by [31]

Pf̂
ðkÞ
i ;j ¼ P f̂

ðkÞ½i ; j �
n o

¼ f̂
ðkÞ½i ; j � � f̂

ðkÞ½i � 1; j �
u½i � 1; j � þ f̂

ðkÞ½i ; j � � f̂
ðkÞ½i ; j � 1�

u½i ; j � 1�

� f̂
ðkÞ½i þ 1; j � þ f̂

ðkÞ½i ; j þ 1� � 2f̂
ðkÞ½i ; j �

u½i ; j � ; (3)

where

uði ; jÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f̂
ðkÞ½i þ 1; j � � f̂

ðkÞ½i ; j �
� �2

þ f̂
ðkÞ½i ; j þ 1� � f̂

ðkÞ½i ; j �
� �2

þ"
r

:

The parameter " is an artificial parameter used to ensure convergence, typically chosen to be less
than 1% [31].

3. Experimental Results
The ability to reconstruct 3-D images in photon-starved conditions is experimentally demonstrated
here. We repeated the experiment described in Section 2.1 [used for generating the integral image
shown in Fig. 2(a)] under extremely low light illumination conditions. The exposure time was set to
te ¼ 0:1 s. Fig. 3(a) shows an example of a captured elemental image. Fig. 3(c) and (d) shows the
reconstruction of the two objects located at the two different planes shown in Fig. 2(b) and (c). The
reconstruction was carried out with the TV-PLMEM algorithm in (2) with � ¼ 0:25. It can be seen
that owing to the availability of multiple perspectives provided by the multiple elemental images, the
objects reconstructed at different depths planes can be visualized despite being completely
invisible in the original elemental images [see Fig. 3(a)].

For evaluation of the SNR in the captured integral image, we captured another integral image
with the objects removed and the scene in absolute dark conditions. Fig. 3(b) shows an example
of such a reference elemental image. We evaluate the SNR in the captured elemental image in

IEEE Photonics Journal Integral Imaging Under Low Light Levels

Vol. 4, No. 4, August 2012 Page 1191



Fig. 3(a) by:

SNR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2
o

� �
� hn2i
hn2i

s
(4)

where hn2i is the average power of the reference noise image [see Fig. 3(b)]. hg2
oi is the average

power of the object region in the elemental image shown in Fig. 3(a), that is, excluding the dark
background area. The segmentation of the object area was done with the help of the high-quality
integral image shown in Fig. 2(a) to obtain the region of the support of the object. The SNR in the
elemental image shown in Fig. 3(a) was found to be 0.16. Hence, Fig. 3(c) and (d) demonstrates
reconstructions from an elemental image array with an SNR significantly below unity.

Equation (4) holds valid since, as we will explain in the following, the dominant noise source is the
CCD read noise, which is additive and signal independent. In general, the noise in the CCD image
can be expressed as the contribution of the photon noise, dark noise, and read noise:ffiffiffiffiffiffiffiffiffi

hn2i
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�o þ �bÞ�te þ Dte þ n2

r

q
(5)

where �o and �b are object and background incident power (flux), respectively; � is the quantum
efficiency; te is the exposure time; D is the dark current value; and n2

r represents the read noise. By
comparing the reference elemental images (scene without objects) in Fig. 3(b) to another image
taken with the camera aperture covered, we found that the background noise, �b�te, is negligible.
From the calibration sheet of our camera, we find that D ¼ 0:2 electrons/pixel/sec, � ¼ 0:5 electrons/
photons, and n2

r ¼ 12 electrons rms/pixel. Thus, for the exposure time of te ¼ 0:1 s and low input
SNR, we see that the dominant contribution to the noise in (5) is that of the read noise n2

r . In this case,
the SNR can be approximated as:

SNR � �o�teffiffiffiffiffi
n2
r

p : (6)

From (6), we may estimate the number of object photons captured per pixel in Fig. 3(a); that is,
�te � SNR �

ffiffiffiffiffi
n2
r

p
=� ¼ 3:8 photons per pixel.

Fig. 3. (a) Elemental images with SNR ¼ 0:16. (b) Elemental image of a low light level scene without
objects used as reference for noise calibration, (c,d) TV-MLEM reconstruction of the object planes at
distances of 50 cm in (c) and 70 cm in (d).
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In order to investigate quantitatively the performance of integral imaging in severe photon-starved
conditions, we applied the algorithm in (2) on a set of simulated integral images. By doing so, we can
calculate the mean square error between the original image and the reconstructed image. We
generated integral images of four different objects at imaging conditions close to that of the real
experiment. Elemental imageswere simulatedwith SNRsof 0.16, 0.18, 0.21, and 0.23. Representative
elemental images and their reconstruction are shown in the upper and lower rows of Fig. 4,
respectively.

Fig. 5 shows the decrease of the reconstructed MSE as a function of the integral image SNR. It
can be seen that despite some diversity in the MSE, due to the different intensity distributions of the
four objects, the general behavior is consistent. For demonstrating the effectiveness of the TV-MLEM,
as found in [20], we have reconstructed the integral images also with the maximum-likelihood
estimation (MLE) algorithm [15]. We found that the reconstruction peak signal-to-noise ratio (PSNR)
obtained with the TV-MLEM algorithm is higher with 2.2 � 0.4 dB than those with MLE, which is
consistent with the finding in [20].

Fig. 4. Upper row: Representative elemental image of the objects used in the simulations ðSNR ¼ 0:21Þ.
Lower row: Reconstructed images with TV-MLEM algorithm.

Fig. 5. MSE of reconstructed images as a function of the SNR of the simulated photon-starved integral
images.
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4. Conclusion
We have considered reconstruction of 3-D objects under very low light illumination levels with
integral imaging. In the experiments, the irradiance of the scene impinging the CCD image sensor is
only slightly above the noise levels. Three-dimensional reconstruction is implemented with integral
imaging with only a few photons per pixel of the image sensor. Under these conditions, we applied
the TV-MLEM algorithm to reconstruct the 3-D images from captured elemental images with very
low SNR. We demonstrated by experiments that we were able to reconstruct and visualize objects
located at different planes under photon-starved conditions.

References
[1] A. Stern and B. Javidi, BThree-dimensional image sensing, visualization, and processing using integral imaging,[ Proc.

IEEE, vol. 94, no. 3, pp. 591–607, Mar. 2006.
[2] C. Burckhardt, BOptimum parameters and resolution limitation of integral photography,[ JOSA, vol. 58, no. 1, pp. 71–74,

Jan. 1968.
[3] Y. Igarashi, H. Murata, and M. Ueda, B3-D display system using a computer generated integral photograph,[ Jpn. J.

Appl. Phys., vol. 17, no. 9, p. 1683, Sep. 1978.
[4] L. Yang,M.McCormick, andN. Davies, BDiscussion of the optics of a new 3-D imaging system,[Appl. Opt., vol. 27, no. 21,

pp. 4529–4534, Nov. 1988.
[5] S. Manolache, A. Aggoun, M. McCormick, N. Davies, and S. Kung, BAnalytical model of a three-dimensional integral

image recording system that uses circular-and hexagonal-based spherical surface microlenses,[ JOSA A, vol. 18, no. 8,
pp. 1814–1821, Aug. 2001.

[6] M. Martı́nez-Corral, B. Javidi, R. Martı́nez-Cuenca, and G. Saavedra, BIntegral imaging with improved depth of field by
use of amplitude-modulated microlens arrays,[ Appl. Opt., vol. 43, no. 31, pp. 5806–5813, Nov. 2004.

[7] F. Okano, J. Arai, K. Mitani, and M. Okui, BReal-time integral imaging based on extremely high resolution video
system,[ Proc. IEEE, vol. 94, no. 3, pp. 490–501, Mar. 2006.

[8] R. Martı́nez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, BEnhanced viewing-angle integral
imaging by multiple-axis telecentric relay system,[ Opt. Exp., vol. 15, no. 24, pp. 16 255–16 260, Nov. 2007.

[9] H. Liao, N. Hata, S. Nakajima, M. Iwahara, I. Sakuma, and T. Dohi, BSurgical navigation by autostereoscopic image
overlay of integral videography,[ IEEE Trans. Inf. Technol. Biomed., vol. 8, no. 2, pp. 114–121, Jun. 2004.

[10] G. Lippmann, BEpreuves reversibles donnant la sensation du relief,[ J. Phys., vol. 7, no. 1, pp. 821–825, 1908.
[11] S. H. Hong and B. Javidi, BThree-dimensional visualization of partially occluded objects using integral imaging,[ J.

Display Technol., vol. 1, no. 2, pp. 354–359, Dec. 2005.
[12] B. Javidi, R. Ponce-Dı́az, and S. H. Hong, BThree-dimensional recognition of occluded objects by using computational

integral imaging,[ Opt. Lett., vol. 31, no. 8, pp. 1106–1108, Apr. 2006.
[13] B. G. Lee and D. H. Shin, BEnhanced computational integral imaging system for partially occluded 3D objects using

occlusion removal technique and recursive PCA reconstruction,[ Opt. Commun., vol. 283, no. 10, pp. 2084–2091,
May 2010.

[14] S. Yeom, B. Javidi, and E. Watson, BPhoton counting passive 3D image sensing for automatic target recognition,[ Opt.
Exp., vol. 13, no. 23, pp. 9310–9330, Nov. 2005.

[15] B. Tavakoli, B. Javidi, and E. Watson, BThree dimensional visualization by photon counting computational integral
imaging,[ Opt. Exp., vol. 16, no. 7, pp. 4426–4436, Mar. 2008.

[16] J. Jung, M. Cho, D. K. Dey, and B. Javidi, BThree-dimensional photon counting integral imaging using Bayesian
estimation,[ Opt. Lett., vol. 35, no. 11, pp. 1825–1827, Jun. 2010.

[17] I. Moon and B. Javidi, BThree dimensional imaging and recognition using truncated photon counting model and
parametric maximum likelihood estimator,[ Opt. Exp., vol. 17, no. 18, pp. 15 709–15 715, Aug. 2009.

[18] I. Moon and B. Javidi, BThree-dimensional recognition of photon-starved events using computational integral imaging
and statistical sampling,[ Opt. Lett., vol. 34, no. 6, pp. 731–733, Mar. 2009.

[19] M. DaneshPanah, B. Javidi, and E. A. Watson, BThree dimensional object recognition with photon counting imagery in
the presence of noise,[ Opt. Exp., vol. 18, no. 25, pp. 26 450–26 460, Dec. 2010.

[20] D. Aloni, A. Stern, and B. Javidi, BThree-dimensional photon counting integral imaging reconstruction using penalized
maximum likelihood expectation maximization,[ Opt. Exp., vol. 19, no. 20, pp. 19 681–19 687, Sep. 2011.

[21] C. M. Do and B. Javidi, BThree-dimensional object recognition with multiview photon-counting sensing and imaging,[
IEEE Photon. J., vol. 1, no. 1, pp. 9–20, Jun. 2009.

[22] S. H. Hong, J. S. Jang, and B. Javidi, BThree-dimensional volumetric object reconstruction using computational integral
imaging,[ Opt. Exp., vol. 12, no. 3, pp. 483–491, Feb. 2004.
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