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We present a three-dimensional (3D) object tracking method based on a Bayesian framework for tracking multiple,
occluded objects in a complex scene. The 3D passive capture of scene data is based on integral imaging. The
statistical characteristics of the objects versus the background are exploited to analyze each frame. The algorithm
can work with objects with unknown position, rotation, scale, and illumination. Posterior probabilities of the re-
constructed scene background and the 3D objects are calculated by defining their pixel intensities as Gaussian and
gamma distributions, respectively, and by assuming appropriate prior distributions for estimated parameters. Mul-
tiobject tracking is achieved by maximizing the geodesic distance between the log-posteriors of the background
and the objects. Experimental results are presented. © 2011 Optical Society of America

OCIS codes: 110.6880, 280.4991, 150.6910.

1. INTRODUCTION
Three-dimensional (3D) tracking of multiple objects in a scene
is of interest in many areas, including surveillance, robotics,
and security. In some cases, objects of interest may be par-
tially occluded, making tracking with two-dimensional (2D)
images difficult due to the superposition of occlusion noise
and object details. Tracking with 3D imaging offers advan-
tages over 2D imaging systems because of its robustness to
object occlusion and the possibility to track multiple objects
moving in all 3D coordinates, including range estimation.
Also, tracking may need to be robust to variations in object
or background features, such as variations in object orienta-
tion and scene illumination.

There have been numerous approaches to address detec-
tion, recognition, and tracking problems using 3D integral
imaging [1–7] or multiperspective imaging [8], or other ap-
proaches. One possible solution is contour-based object
tracking [9–13]. Detection of the object is required for these
methods, and then tracking is conducted by moving the pre-
vious contour toward the current boundaries. In light of the
fact that the active contour method [13] evaluates the changes
of local intensities along the boundary; it is limited to small
displacements. On the other hand, region-based methods
[10,11] exploit the information of both the object and the back-
ground for more robust and flexible performance.

In this paper, we present tracking of multiple occluded 3D
objects using a region tracking method based on statistical
Bayesian formulation and 3D integral imaging used for passive
sensing and computational 3D scene reconstruction. It is as-
sumed that the background is stationary for each frame. We
also assume that the reconstructed pixel intensities of both
background and multiple objects are independent identically
distributed (IID), and they follow Gaussian and gamma distri-
butions based on their grayscale images, respectively. Within
the Bayesian framework, posterior probabilities of back-
ground and objects are calculated by assuming the appropri-
ate prior distributions for estimated parameters. At each

incoming frame, the 3D scene is reconstructed. Then, the ob-
jects are located in 2D slices of the 3D reconstructed scene
by maximizing the geodesic distance [14] between the log-
posteriors of the reconstructed background and objects to
be tracked. Then, each object is tracked individually in 3D
space by maximizing the above distance across all the 2D
reconstructed planes.

In Section 2, we briefly describe the concepts of 3D passive
image sensing and visualization. Our statistical Bayesian
tracking algorithm is presented in Section 3. The experimental
results are demonstrated in Section 4, followed by the sum-
mary and conclusion.

2. SYNTHETIC APERTURE INTEGRAL
IMAGING AND COMPUTATIONAL
RECONSTRUCTION
As illustrated in Fig. 1(a), a camera array is used to acquire the
elemental images from slightly different perspectives with
respect to the scene. For computational reconstruction, each
elemental image is projected through an associated virtual
pinhole array to the desired reconstruction plane, and it is
superimposed with other projected elemental images [6].
The 3D scene can be computationally reconstructed plane
by plane using this method, as depicted in Fig. 1(b). Each
elemental image is projected and superimposed by the mag-
nification M ¼ d=f , where d is the distance from the image
sensor to the 3D object and f is the focal length of the image
sensor, respectively. This enables visualization of the partially
occluded objects, because only the reconstruction plane with
the object of interest is in focus, while the occlusion and back-
ground are out of focus.

3. TRACKING WITH THE BAYESIAN
ALGORITHM
Object segmentation is applied on the reconstructed im-
ages for tracking. Reconstructed images are divided into
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the background region (Ωb) and the object region (Ωo)
[15–17]. Our goal is to find the object regionΩo (in a statistical
sense), matching the object support. We assume that the back-
ground and the objects are statistically independent and that
the background is stationary for each frame. The objects’ pixel
intensities are usually correlated. However, for simplicity, we
assume that the pixel intensities of both the reconstructed
background and the reconstructed objects are unknown, in-
dependent, and follow Gaussian and gamma distributions, re-
spectively. We will present experimental results in Section 4
illustrating the tracking performanceunder these assumptions.
In the following derivations, for simplicity, one-dimensional
notations are used for the signals as s ¼ fsiji ∈ ½1; N �g, where
N is the total number of pixels. Let w ¼ fwiji ∈ ½1; N �g be a
binary window that defines a support for objects, such that
wi ¼ 1 for object pixels (denoted as o), and wi ¼ 0 for back-
ground pixels (denoted as b). The purpose of segmentation
is to estimate the window function w for objects of interest
in the reconstructed scene. Thus, each point on the reconstruc-
tion can be modeled as a spatially disjoint combination of
object and background as

si ¼ oiwi þ bið1 −wiÞ: ð1Þ

Several optimal criterion laws [18] have been derived
for situations that the statistical properties of object and
background are from the exponential family (i.e., gamma or
Gaussian). In 3D integral imaging reconstruction of the scene,
the optical rays generated by elemental images are superim-
posed. Thus, the background region of the reconstructed
images tends to be Gaussian distributed by applying the cen-
tral limit theorem. The statistical behavior of various objects
may be different. Therefore, a gamma distribution is chosen
as a robust statistical distribution to capture the object pixel

distributions. By adjusting its parameters, we can approxi-
mate various distributions. Also, the object statistics at differ-
ent times (frames) or at different object poses or orientations
may vary. The gamma distribution parameters can be esti-
mated to capture such variations of the object.

A. Background Region Statistics
By assuming a Gaussian distribution for the background
region, one can write the probability density function (PDF)
as follows:

f bðsÞ ¼
1ffiffiffiffiffi
2π

p
σ
e−

ðs−μÞ2
2σ2 ; ð2Þ

where μ and σ2 are the mean and the variance for the back-
ground region, respectively.

We estimate the unknown variables μ and σ2 by maximizing
the conditional probability Pbðμ; σ2jw; sÞ:

ðμ̂; σ̂2Þ ¼ argmax
ðμ;σ2Þ

Pbðμ; σ2jw; sÞ; ð3Þ

where ðμ̂; σ̂2Þ is the estimate of ðμ; σ2Þ in the maximum a pos-
teriori (MAP) sense. According to Bayes’s rule [19], the
conditional probability can be rewritten as

Pbðμ; σ2jw; sÞ ¼
Pbðsjw; μ; σ2ÞPbðμ; σ2Þ

PbðsÞ

¼ Pbðsjw; μ; σ2ÞPbðμÞPbðσ2jμÞ
PbðsÞ

: ð4Þ

We assume that PbðμÞ is uniformly distributed and
Pbðσ2jμÞ ∝ 1=σ2. Taking Eq. (1) into account, we write the
likelihood Pbðsjw; μ; σ2Þ as follows:

Pbðsjw; μ; σ2Þ ¼
YN
i¼1

�
1ffiffiffiffiffi
2π

p
σ
e−

ðsi−μÞ2
2σ2

�ð1−wiÞ
: ð5Þ

In order to derive the MAP of unknown parameters, one has
to take partial derivatives of the log-posterior function with
respect to μ and σ2, and set each to zero as follows:

∂ logPb

∂μ ¼ 0⇒ μ̂js;w¼ 1
N ð1−wÞ

XN
i¼1

sið1−wiÞ;

∂ logPb

∂σ2 ¼ 0⇒ σ̂2jμ̂; s;w¼ 1
N ð1−wÞ þ 2

XN
i¼1

ðsi − μ̂Þ2ð1 −wiÞ; ð6Þ

where N ð·Þ is an operator providing the number of ones in its
operand and N is the total number of input image pixels.

B. Object Region Statistics
By assuming an IID gamma distribution for the pixels of the
multiple 3D objects to be tracked, one can write the PDF of
the object j as follows:

f ojðsÞ ¼
βα

ΓðαÞ s
α−1e−βs; ð7Þ

where j denotes the index of objects to be tracked, Γð·Þ is the
gamma function, and α > 0, β > 0.

Fig. 1. (Color online) 3D integral imaging sensing and reconstruc-
tion: (a) scene capture process and (b) 3D reconstruction of the scene
in Fig. 2.
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We assume that the shape parameter α is known, and that
the rate parameter β has known gamma prior distribution,
πðβÞ≡ gammaðα0; β0Þ whose α0 and β0 are known. ðα0; β0Þ
are selected based on the types of objects and scenes used
in the experiments. One can derive the posterior distribution
of each object region:

Pojðβjα;w; sÞ∝ Pojðsjw;α;βÞπðα0;β0Þ

¼
YN
i¼1

� βα
ΓðαÞ s

α−1
i e−βsi

�
wi βα00
Γðα0Þ

βα0−1e−β0β

¼ βαN ðwÞ

ΓðαÞN ðwÞ

�YN
i¼1

swi
i

�α−1
e−β

P
N
i¼1

siwi
βα00

Γðα0Þ
βα0−1e−β0β

∝ βðαN ðwÞþα0Þ−1e
−β
�P

N
i¼1

siwiþβ0
�

∼ gamma

�
αN ðwÞ þ α0;

XN
i¼1

siwi þ β0
�
: ð8Þ

The posterior distribution of the object region is also
gamma distributed; however, with different parameters. The
Bayes’ estimator of β under the squared error loss is achieved
as the posterior mean [19]:

β̂jα;w; s; α0; β0 ¼
αN ðwÞ þ α0P
N
i¼1 siwi þ β0

: ð9Þ

C. 3D Tracking with the Bayesian Algorithm
The tracking of objects can be modeled as an estimation
problem. Our objective is to estimate the object subspace
in a 3D stack of reconstructed planes obtained by integral ima-
ging. Assume that the initial positions of our objects are lo-
cated in some regions with unknown reconstructed planes
in the 3D space. The objects are tracked individually, because
they may be located at different depths. For the first frame,
starting with an arbitrary reconstructed plane p between
the occlusion and the background, we are first seeking to
locate the objects individually, which is analogous to maxi-
mizing the geodesic distance [14] of the object j and the
background:

εpjðs;wÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

�
log

�
Pojðsjw; α; β̂Þ
Pbðsjw; μ̂; σ̂2Þ

�
2
�
−

�
E

�
log

�
Pojðsjw; α; β̂Þ
Pbðsjw; μ̂; σ̂2Þ

��	
2

s
;

ð10Þ
where p is the reconstructed plane and j is the index of ob-
jects to be tracked. Thus for an object j at the reconstructed
plane p, w is the optimal binary window and the optimal
segmentation.

Equation (10) can be interpreted as the snake energy [13].
The maximization is done by applying a level-set method [20].
Let ΓðtÞ be the object surface at time t, the embedding
level-set is defined as φðq; tÞ, where q denotes a point in
the level-set, such that φðq; tÞ < 0 represents the object re-
gion, and φðq; tÞ > 0 represents the background region. Our
object surface can be explicitly written as Γðt ¼ t0Þ ¼
fqjφðq; t ¼ t0Þ ¼ 0g. It can be shown [10,20] that if each

point propagates to the interface (n
⇀ ¼ ∇φ=j∇φj), then the

evolution of ΓðtÞ can be modeled as a discrete space–time par-

tial differential equation, φðq; tþ 1Þ ¼ φðq; tÞ þ FðqÞ‖∇
⇀

φ‖,
where FðqÞ represent the speed function.

Thus the maximization problem is analogous to computing
the derivatives of εpjðs;wÞ with respect to s. The correspond-
ing Euler–Lagrange equation result is ∂εpjðs;wÞ=∂s ¼
ðεpjðs;wÞÞn

⇀
, where n

⇀
is the outward normal to the object

surface. By following Ref. [10], the speed function can be
rewritten as

FðqÞ ¼ ∇φεpjðs;wÞ þ div
�

∇ðφðq; tÞÞ
j∇ðφðq; tÞÞj

�
: ð11Þ

Then each object is tracked individually in 3D space by
maximizing the distance in Eq. (10) across all the recon-
structed planes of interest:

εjðs; ŵ; p̂Þ ¼ argmax
ðp;wÞ

εpjðs;wÞ: ð12Þ

Fig. 2. (Color online) Experimental setup and objects with unknown
occlusion and background used in the scene: (a) experimental setup,
(b) objects to be tracked (two cars), (c) background, and (d) elemental
images.

Fig. 3. (Color online) 3D plot of objects positions to be tracked
(3D movements).
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4. EXPERIMENTAL RESULTS
For optical experiments, two cars with unknown position,
rotation, illumination, and the presence of unknown occlusion
and background are used as objects to be tracked [see
Fig. 2(a)]. Objects are shown in Fig. 2(b), and the background
is shown in Fig. 2(c). Elemental (multiview) images for this

Fig. 4. (Color online) 2D tracking results of optimal object tracking
algorithm presented in Ref. [17] with objects rotated and illumination
changed for scenes in (a) and (b): (a) two occluded objects in frame
two, (b) two occluded objects in frame three, and (c) tracking results
of frame three.

Fig. 5. (Color online) 3D reconstruction with occluded objects
(a) occluded objects (cars behind tree branches) are located at Z ¼
380mm and Z ¼ 410mm from the sensor, respectively. (b)–(f) 3D re-
constructed image sequences at Z ¼ 190, Z ¼ 380, Z ¼ 410, Z ¼ 570,
and Z ¼ 690mm, respectively. (b) Reconstructed plane of occlusion
(tree branches).

Fig. 6. (Color online) 3D tracking results for the first frame: (a) car 1 with occlusion (Media 1), (b) car 2 with occlusion (Media 2), (c) car 1 without
occlusion (Media 3), and (d) car 2 without occlusion (Media 4)
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scene are captured as illustrated in Fig. 1. Each elemental
image has 2784 × 1856 pixels. Sample elemental images with
various perspectives are shown in Fig. 2(d). A camera lenswith
f ¼ 50mm is used. Our camera is located at distance
Z ¼ 0mm; the occlusion is located at Z ¼ 190mm; the two
cars to be tracked are initially located at Z ¼ 380mm and
Z ¼ 410mm, respectively, and the background is located at
Z ¼ 690mm. The two objects (cars) are moved randomly,

and 60 positions for both objects are recorded. The 3D move-
ments of the objects are shown in Fig. 3.

Our background region is modeled as Gaussian distribution
with mean μ and variance σ2, whose values can be estimated
from Eq. (6). Those estimates vary and depend on the scene
and on the illumination conditions. For the object region, α
may be different from object to object, and usually varies be-
tween 2 and 5. For our case, we assume that α ¼ 2:3 from ex-
periments. In our experiment, β follows gammaðα0; β0Þ, with
α0 ¼ 2 and β0 ¼ 0:05. The estimate of β varies in between
0.015 to 0.05 from frame to frame, because the pixel sta-
tistics change for different object positions, rotations, and
illuminations.

The tracking of heavy occluded objects is usually difficult.
Also, changes in rotation or illumination for the objects add
more complexity to this problem. Consider that two objects
[see Fig. 2(b)] move and rotate in between the occlusion
and the background from frame to frame with varying illumi-
nation. In general, 2D algorithms may fail to track in this case.
Experimental results with the 2D optimal object tracking al-
gorithm presented in [17] are shown in Fig. 4. It can be seen
that the performance using the 2D imaging approach is quite
poor and the objects cannot be tracked. However, we show
that our 3D tracking method performs reasonably well for this
scene with changes in the orientation and illumination of the
object. Reconstruction from elemental images for the first
frame by using 3D computational method is shown in Fig. 5.
For comparison, tracking with and without occlusion is per-
formed. The performance for the first frame is shown in Fig. 6
(Media 1, Media 2, Media 3, and Media 4). Tracking examples
of both cars are shown in Fig. 7 (Media 5 and Media 6). 3D
tracking experiments are performed with varying orien-
tation and illumination. Illumination is reduced by half in
Fig. 7(b) for the tracking experiments, and car 2 and the op-
posite side of car 1 are tracked. Both cars are rotated in the
tracking results in Fig. 7(c). Car 2 is rotated for tracking re-
sults in Fig. 7(d). Illumination is doubled, and car 1 is rotated
by 135 degrees for tracking results in Fig. 7(e).

5. CONCLUSIONS
We have presented a Bayesian framework for tracking
multiple objects in 3D space using a region tracking method
based on statistical Bayesian formulation and 3D integral ima-
ging. The proposed method is robust to partial occlusion and
an unknown background scene, and it works with objects
with unknown position, range, rotation, scale, and illumina-
tion. In the proposed tracking algorithm, the reconstructed
pixel intensities of the background and the objects are
assumed to follow Gaussian and gamma distributions, respec-
tively. By assuming appropriate priors, posterior distributions
of the background and the objects can be calculated. Multi-
object tracking is achieved by maximizing the geodesic
distance between the log-posteriors of the 3D reconstruc-
ted background and the objects. We have shown that statis-
tical Bayesian formulation used with 3D integral imaging
provides a promising technique for tracking objects in the
3D space.
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