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Three-dimensional (3D) sensing and imaging technologies have been extensively researched for many
applications in the fields of entertainment, medicine, robotics, manufacturing, industrial inspection, se-
curity, surveillance, and defense due to their diverse and significant benefits. Integral imaging is a pas-
sive multiperspective imaging technique, which records multiple two-dimensional images of a scene from
different perspectives. Unlike holography, it can capture a scene such as outdoor events with incoherent
or ambient light. Integral imaging can display a true 3D color image with full parallax and continuous
viewing angles by incoherent light; thus it does not suffer from speckle degradation. Because of its unique
properties, integral imaging has been revived over the past decade or so as a promising approach for
massive 3D commercialization. A series of key articles on this topic have appeared in the OSA journals,
including Applied Optics. Thus, it is fitting that this Commemorative Review presents an overview of
literature on physical principles and applications of integral imaging. Several data capture configura-
tions, reconstruction, and display methods are overviewed. In addition, applications including 3D under-
water imaging, 3D imaging in photon-starved environments, 3D tracking of occluded objects, 3D optical
microscopy, and 3D polarimetric imaging are reviewed. © 2013 Optical Society of America
OCIS codes: 110.6880, 150.6910, 120.2040.

1. Introduction

New technologies for three-dimensional (3D) sensing
and visualization of real-world objects have been pur-
sued by scientists and engineers for many decades.
As opposed to traditional two-dimensional (2D) ima-
ging techniques, 3D imaging technologies can poten-
tially capture the 3D structure, range, and texture
information of objects. Additionally, 3D imaging
technologies are robust to partial scene occlusion.
There are many 3D imaging technologies, such as ho-
lography and related interferometry techniques,
stereoscopy, pattern illumination techniques, ladar,

and time-of-flight techniques. Passive multiperspec-
tive 3D imaging technique has garnered recent inter-
est for its unique properties. Multiperspective 3D
imaging obtains 3D scene information by recording
conventional 2D incoherent images from multiple
views. Because standard 2D images are used, multi-
perspective 3D imaging systems can be built using a
single inexpensive camera with a lenslet array or an
array of inexpensive imagers. Also, 3D multiperspec-
tive imaging systems can be deployed for short-range
or long-range applications, making the technology
more scalable than many of the competing 3D
imaging technologies.

In 1908, Lippmann proposed a novel technique,
named integral photography (IP), which can recon-
struct true 3D images that can be observed with full
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parallax and quasi-continuous viewing angles. This
technique, which is based on the reversibility princi-
ple of light rays, produces autostereoscopic images.
Thus, no special viewing devices are required to
perceive 3D images. Besides early follow-ups on
Lippmann’s IP [1–5], there were no substantial activ-
ities in this field for much of the 20th century. This
was mainly due to the unavailability of mature
technologies for cost-effective devices such high-
resolution image sensors, displays, and microlens
arrays (MLAs).

However, thanks to the advances in optoelectronic
sensors such as CMOS and CCDs, display devices
such as LCDs, and commercially available digital
computers, the principles of IP have been resurrected
and developed recently. In its present form, integral
imaging belongs to a broader class of multiview ima-
ging systems and has become a promising approach
for 3D sensing and imaging. Integral imaging has
been extensively researched for 3D sensing, capture,
and visualization of objects utilizing state-of-the-art
optical and digital devices and various imaging
techniques [6]. Numerous research results have been
achieved including 3D display and television [7–12],
automatic target recognition [13–16], target ranging
[17,18], 3D photon counting imaging [19–24], 3D
imaging for objects that are partially occluded or
are in scattering medium [25,26], 3D underwater
imaging [16,27], medical imaging [28–30], and others
[31–33], to name a few.

In this paper, we present an overview of literature
on recent developments and applications in integral
imaging. The histories and principles of integral
imaging are reviewed in Section 2. Several different
sensor configurations for 3D sensing are discussed in
Section 3. Section 4 covers 3D displays or optical re-
construction and several computational 3D recon-
struction methodologies. Some applications of 3D
sensing and display technologies are presented in
Section 5.

As is the case with any technical overview paper of
this type, it is not possible to present an exhaustive
coverage of the field. Therefore, we may have inad-
vertently overlooked some relevant work, for which
we apologize in advance. A number of references
[1–90] are provided to aid the readers with various
aspects of this technology.

2. History of Development and Principles of Integral
Imaging

A typical 3D imaging process may include a series of
stages such as image capture, digital processing, and
finally the display stage. Wheatstone introduced the
first stereoscope about 170 years ago [34]. Since then,
many 3D techniques have been proposed. However,
none have clearly demonstrated superiorities over
the others for mass commercialization. The human
visual system perceives the 3D information of a scene
from what could be called depth cues. Among them,
the binocular disparity, or stereopsis, is the most
decisive. Stereopsis may be acquired from parallax

between the retinal images obtained with different
perspectives for both eyes.

The stereoscopic 3D display technology is based on
the use of special glasses that induce binocular dis-
parity by providing a different image to each eye of
the observer. The first proposal in this sense dates
from 1853, when Rollmann proposed the use of ana-
glyph glasses [35]. In such cases, the stereoscopic in-
formation is encoded in two complementary colors.
This method is still widely used due to its simplicity
and low price. However, it has poorly reproduced col-
ors and is very sensitive to chromatic anomalies of
the observer. A more recent approach uses temporal
multiplexing of left and right images using viewing
glasses made with liquid crystal with a shutter
[36,37]. Other stereoscopic techniques are based on
the use of polarized crystals to induce binocular dis-
parity. In this case, the left and right images are
emitted with orthogonal polarizations [38].

These techniques have the disadvantage of requir-
ing the use of special viewing glasses for observation
of the images, which causes discomfort for long obser-
vation periods. Thus, there is motivation for the
development of autostereoscopic techniques, which
do not require the use of special glasses. Among the
techniques that provide autostereoscopic images, the
most fascinating and elegant is holography. Holo-
graphic technology offers continuous parallax in all
directions. However, holography requires coherent il-
lumination and dark conditions during data record-
ing. Also, there is a large volume of information
carried by the images. Thus, holographic techniques
may not be ready for commercial 3D displays in the
near future [39–41]. Another alternative is the volu-
metric display [42]. However, this technology is still
at a very early stage of development.

The autostereoscopic techniques, which have
reached more development so far, are those in which
the monitor itself implements the function of sending
the corresponding images to the left and the right
eyes. Among these techniques, the best known is
the use of a lenticular sheet [43], which is an array
of flat-cylindrical lenses imprinted on a transparent
panel to project a stereoscopic image. The major dis-
advantage of this technique is that it provides only
binocular parallax for a single position of the obser-
ver and for a unique perspective. Extension of this
principle to multiple views was also developed, to al-
low horizontal parallax. Multiview autostereoscopic
techniques typically use five to nine views. Several
techniques were developed to avoid the lateral reso-
lution loss by generating multiple views, such as
using slanted displays or utilizing RGB subpixel
structure of the monitor [44]. Another alternative ap-
proach of this concept is by using parallax barriers,
which are arrays of vertical seals that allow the view
shown on the left eye to be different with the one on
the right eye [45,46]. A major disadvantage of the
parallax barriers is their optical loss.

In any case, these autostereoscopic techniques,
and also the stereoscopic ones detailed above, have
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an essential problem that may prevent them from
applications that require prolonged observation
time. This problem arises from the conflict between
eye accommodation and convergence of the visual
axes. This happens because, during the observation
of a stereoscopic monitor, the eyes relax the accom-
modation to focus on the screen. Then, the projected
stereoscopic images produce disparity in the retinal
images. Such disparity stimulates convergence
movements of the eyes axes to allow the fusion and
perceive the depth. This kind of convergence creates
an accommodation stress to allow the eyes to focus on
the closer scene. However, accommodation should
not change because the eyes must focus all the time
onto the screen to allow perceiving sharp images.
This discrepancy forces the visual system to an on-
going effort against nature. As a result, people feel
visual fatigue and, sometimes, strong feelings of
discomfort [47,48].

A very interesting alternative to these techniques
comes from a technique called IP, proposed by
Lippmann in 1908 [49]. Basically, Lippmann’s idea
was to record many 2D images of a scene from differ-
ent perspectives. This can be done on a macroscopic
scale using an array of cameras or, on a smaller scale,
inserting a MLA in front of the optical sensor
(see Fig. 1).

In Fig. 1, we see that the array of microlenses per-
mits the capture of the 3D scene from many different
perspectives. The individual images are usually
called elemental images (EIs). The matrix of all
the EIs is called the integral image of the 3D scene.
Note that, to avoid the overlapping between neigh-
boring EIs, it is necessary to insert barriers physi-
cally or optically between them. Because of the
imaging capacity of the microlenses, there is only
one plane of the 3D scene, the conjugate plane, which
produces sharp images onto the sensor. Other planes
are known as out-of-focus planes and produce
blurred images on the sensor. However, the micro-
lenses usually have low numerical aperture and

produce slightly blurred images for the region of in-
terest. This blurring is negligible when compared
with the size of the pixels of the sensor. Thus, in the
following sections, we will consider that all parts of
the 3D scene are captured in focus. In Fig. 1, we have
marked in grey the field of view (FOV) of a microlens,
which is defined by the angle subtended by the EI
from the center of the corresponding microlens. Note
that each microlens captures a frontal view of the 3D
scene. To capture sufficient 3D information, it is ne-
cessary that each part of the scene be captured by
multiple EIs.

As we will present in this paper, this 3D recorded
information can be processed in different ways to be
used in a variety of applications.

Now we concentrate on the original application
presented by Lippmann. This idea was to project
the integral image onto a 2D display placed in front
of an MLA. The display stage is the reverse of the
pickup stage. The microlenses used in the display
could be similar to the ones used in the data capture
stage or can be scaled proportionally. As we can see in
Fig. 2, the different perspectives are integrated into a
3D image. Integral imaging is essentially different
from stereoscopy. In stereoscopy, two different 2D
images are projected to the right and the left eye, re-
spectively, and the brain makes the fusion to perceive
depth. In integral imaging, the microlenses produce
differences in the light density in the space in front of
the observer. Thus, there is a real reconstruction of
the light structure produced by the original 3D scene.
In Fig. 2, we show a very simple example of the
reconstruction of a point source. The ray bundles
produced by the pixels of the display intersect at the
same region of the reconstruction space. After the in-
tersection, the bundles continue to propagate toward
the observer. Then what the observer receives is a di-
verging ray beam that is equivalent to the one pro-
duced by a real point source on the object. Thus,
the visual system perceives this virtual point source
as a real image. In this case, there is agreement be-
tween the accommodation effort and the conver-
gence. Both the eye axes and the accommodation are
adjusted to the position of the virtual point object.
The scene is perceived as 3D by the observer regard-
less of the observation positions and without eye
strain. Although this concept is a century old, it has
been widely researched only recently due to advances

Fig. 1. (Color online) Image capture stage in IP.

Fig. 2. (Color online) Display stage in integral imaging.
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in technology to have suitable MLAs, imagers, dis-
plays, numerical data processing, and communication
systems [50].

Over the past decade, there has beenmuch effort to
develop this technology, seeking to improve its per-
formance in terms of resolution, viewing angle, con-
tinuity of perspectives, and applications, such as
computational reconstruction of 3D scenes, 3D object
recognition, and 3D imaging in very low levels of
illumination.

3. Sensing Stage of Integral Imaging

A. Direct Image Capture

The original Lippmann concept is based on the cap-
ture of many perspectives of a 3D scene bymeans of a
multilens. As shown in Fig. 1, the image sensor is
placed behind the lenslet array. The proper selection
of the capture parameters strongly depends on the
application. For example, when the aim of the cap-
ture is to record EIs intended for being displayed in
an integral imaging monitor, one has to take into ac-
count that microlens pitch is the display resolution
unit (DRU) in integral imaging displays [62]. Thus,
for this kind of application, a large number of EIs
with moderate number of pixels is required.

If the 3D scene is far from the camera, the angular
extension of the array of lenses, as seen from the cen-
ter of the scene, is small. In this case, a camera lens,
also named as depth-control lens [63,64], is neces-
sary to image the reference plane of the far 3D scene
onto MLA. In that case, some parts of the 3D scene
are imaged in front of the MLA, and other parts are
imaged behind theMLA. Since this capture modality,
shown in Fig. 3, is different from the one described in
Section 2, we denote it as far-field integral imaging
(FInI). In the computer-graphics community, the
FInI cameras involve the same optical principles as
the plenoptic cameras [65].

Note that using the camera lens has the effect of
transposing the resolution constraints [66]. Thus,
in FInI the MLA pitch determines the spatial resolu-
tion of reconstructed sections of the 3D scene. The
angular resolution, or segmentation capacity of the
3D reconstruction, is restricted by the number pixels
per EI. To guarantee good spatial resolution in the
reconstructed sections of the 3D scene, a large num-
ber of small microlenses are required. From the cap-
tured EIs, one can calculate the so-called subimages,

or view images, by extracting and composing the
pixels at the same local position in every EI [67].
As we can see in Fig. 4, all the pixels of a subimage
(for example the red pixels in the figure) only receive
the light proceeding from the 3D scene and passing
through a specific subaperture of the camera lens.
Any subimage sees a different perspective of the
scene and has a high depth of field, which corre-
sponds to images obtained through smaller subaper-
tures. The number of pixels of these subimages is just
equal to the number of microlenses of the array.

This direct pickup procedure is very useful because
it allows the capture of the EIs by use of only one sen-
sor and one snapshot. The obtained parallax is deter-
mined by the angle subtended by the camera lens as
seen from the center of the scene. The integral
images captured by this procedure can be very useful
for the depth reconstruction of far scenes with good
optical segmentation capacity. Also, since FInI cam-
eras record scenes that are in the close neighborhood
of the MLA, the acquired EIs are ready for direct
display in an integral imaging monitor.

B. Synthetic Aperture Integral Imaging

In the lenslet-based integral imaging systems, the
achievable resolution is limited by the size of lenslet
and the number of pixels allocated to each lenslet. In
essence, resolution of each EI is limited by three
parameters: the pixel size, the lenslet point spread
function, and the lenslet depth of focus [8,19]. In
addition, aberrations and diffraction are significant
because the size of the lenslet is relatively small.

In contrast to the lenslet-based systems, integral
imaging can be performed either in a synthetic
aperture mode or with an array of high-resolution
imaging sensors. Each perspective image can be re-
corded by a full-size CCD or CMOS sensor of several
megapixels [66,68]. Moreover, instead of the sensor
array, a single sensor can translate on a 2D plane
to capture multiple 2D images. This approach may
be considered synthetic aperture integral imaging
(SAII). SAII enables one to obtain larger FOV, high-
resolution 2D images because each 2D image makes
full use of the detector array and the optical aper-
ture. In addition, SAII potentially creates large
pickup apertures, which is much larger than what
is practical with conventional lenslet-array-based
integral imaging. Larger pickup apertures are impor-
tant to obtain the required range resolution at longer

Fig. 3. (Color online) Capture setup of FInI.
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distances. It should be noted that this method may
not be suitable for dynamic scenes. Figure 5 illus-
trates the pickup stage by using a sensor array.

SAII also allows for the entire integral imaging
system to move. For example, a small array of cam-
eras or a camera with a single lenslet array can be
moved to increase parallax and improve both range
and FOV [68].

C. Randomly Distributed Sensing

Integral imaging has been investigated under the as-
sumption that EIs are captured on a known equally
spaced, planar, and regular grid of lenslets or lenti-
cular elements. In the synthetic aperture regime,
however, maintaining the regular pickup pattern
might not be feasible for certain applications such
as aerial 3D imaging. In the process of collecting ima-
gery across a large aperture, the positions of sensors
can hardly be restricted to what is prescribed by
conventional pickup strategies, i.e., regular, planar
rectangular grid. In [69] a generalized framework
for 3D integral imaging with arbitrary 3D pickup
geometry has been presented. A finite number of sen-
sors with known coordinates are randomly distribu-
ted in 3D space. In addition, it is assumed that all the

sensors have parallel optical axes and no rotation
from each other. Figure 6 illustrates an integral
imaging system with random distributed sensors.
The reference (E0) image and the kth EI (Ek) are
shown with their respective FOV in blue and
green, respectively. The pickup locations of all the
sensors are measured in a universal frame of
reference, Φ:�X;Y; Z�. The local coordinate system,
Ψ:�u; v;w�, is defined for each sensor with its origin
lying on the center of the sensor. To reconstruct 3D
images, a computational reconstruction framework
based on the backprojection method has developed
using a variable affine transform between the image
space and the object space. More detail is introduced
in Section 4.

D. Axially Distributed Sensing

3D imaging with axially distributed sensing (ADS) is
another multiperspective 3D imaging architecture.
In this ADS system, either a single image sensor

Fig. 4. (Color online) FInI scene capture. (a) Subimages are synthesized from the pixels of each EI. (b) Subimages are equivalent to the
EIs that could be obtained by one integral imaging sensor.

Fig. 5. (Color online) Pickup stage of integral imaging using a
camera array.

Fig. 6. (Color online) Illustration of an integral imaging system
with randomly distributed sensors.
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is translated along its optical axis or the objects move
parallel to the optical axis of the sensor. In ADS ar-
chitecture [70], nonuniform longitudinal perspective
information is recorded across the FOVof the sensor.
In fact, no parallax is available for points residing on
the optical axis while parallax increases as objects
get close to the periphery of the FOV. The diagram
of the ADS architecture is shown in Fig. 7. For sim-
plification, a pinhole approximation is considered for
each pickup position with the distance between the
pinhole and the sensor defined as g. We assume that
the total number of EIs is K. The ability of the ADS
architecture to collect 3D information can be de-
scribed by the total angle subtended by the nearest
and the farthest pickup positions. Consider an object
point located at a longitudinal distance z0 away from
the nearest pickup position and radial distance r
from the optical axis (see Fig. 7). The total angle sub-
tended by the sensors with respect to the object point
can be written as

Ω � tan−1

�
rs

r2 � z20 � z0s

�
; (1)

where s denotes the distance between the nearest
and the farthest pickup positions along the optical
axis. Note the special case of r � 0 where there is
no parallax available; hence no 3D information is
obtained for on-optical-axis object points. The total
angle increases with r increasing, which implies a
greater capacity for 3D information collection when
objects are farther from the optical axis (large r). The
collected imagery can be reconstructed using the
modified backpropagation technique taking into ac-
count the varying magnification ratio for each inter-
mittent 2D image (see Section 4 in detail).

E. Unknown Sensor Position Estimation

Prior knowledge of sensor positions in the pickup
stage is required for conventional integral imaging
3D reconstruction using backprojection algorithms.
In certain image pick up geometries, it may be diffi-
cult to obtain an accurate measurement of sensor po-
sitions such as sensors on moving platforms and/or
randomly distributed sensors. In [71], a multi-
sensor position estimator in conjunction with 3D

reconstruction method of integral imaging has been
presented to extend its applications to scenarios
where sensor positions are not available and/or can-
not be measured accurately. This method assumes
that the relative position of two sensors is known
whereas all other sensors positions are unknown.
In addition, all the sensors are located within an
identical plane with parallel optical axes. This meth-
od combines image correspondence extraction and
matching, pinhole perspective model, two view
geometry and computational integral imaging 3D
reconstruction techniques to overcome the limita-
tion in conventional integral imaging systems. The
steps to estimate the sensor positions are briefly
as follows.

• Find image correspondences/matching points
in the image sequence. For example, for an object
point Mi, its image correspondences are
m1i; m2i;…;mki, respectively (see Fig. 8).
• Calculate 3D coordinates of object points

(Mi � �Xi; Yi; Zi�) by using their corresponding image
points (m1i and m2i) and the first two known sensor
positions.
• Estimate the remaining sensor positions by

using the calculated 3D object points (Mi) and their
corresponding image points (mki � �uki; vki�)
The expression to estimate the kth sensor position,
�Sxk; Syk�, an be written as

Sxk � −
Zi�uki − ax� − f Xi

f xk
; Syk � −

Zi�vki − ay� − f Yi

f yk
;

(2)

where f is focal length and ax and ay are the coordi-
nate of the principle point on the image.

Experimental results [71] also demonstrate that
the method to estimate the unknown sensor posi-
tions may be used to improve the image reconstruc-
tion quality in situations where the sensor positions
recorded are subject to measurement errors.

F. Computer-Synthesized EIs

Instead of the pickup stage using the lenslet array or
multiple image sensors, a composite of 2D images of
the same scene from different perspectives can be
generated by computer graphics. In image rendering
techniques, multiview images are generated by com-
puting the fixed mapping between the object points

Fig. 7. (Color online) Optical pickup stage for the ADS
architecture.

Fig. 8. (Color online) Illustration of estimating unknown sensor
positions.
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and their corresponding image points. The key pro-
blem is how to efficiently render a 3D scene from
multiple perspectives. The typical and simple meth-
od to render a single image is to use the ray-tracing
technique [72]. However, single-view rendering is not
efficient for the large number of 2D images and com-
plex 3D scenes. Methods to simultaneously render
multiple images have been studied in [73,74].
The parallel group rendering technique renders mul-
tiple image points located in a certain direction at the
same time, which brings tremendous savings in ren-
dering time to scenarios where the total number of
images is a few orders higher than the resolution
of each image. The multiple viewpoint rendering
technique can render images for a row of cameras
simultaneously, which is better to generate high-
resolution dense light fields on a regular grid. Note
that computer-generated integral imaging requires
the prior knowledge of the 3D model of the scene.

4. 3D Visualization of Integral Imaging

A. Optical Display

As stated in Section 2, one of the important applica-
tions of integral imaging technology is the implemen-
tation of screens for the 3D display of images. An
integral imaging monitor potentially provides the
observer with a light distribution that reconstructs
the original scene. The viewer can perceive this re-
construction as 3D, independent of his or her position
relative to the screen.

In the search for the optimum device for the dis-
play of integral images, many parameters must be
taken into account. First is the lateral resolution.
An optimum observation in an integral imaging
monitor occurs when only one pixel of the display de-
vice is observed through the corresponding microlens
[75] and the viewer sees as many pixels as there are
microlenses in the array. Consequently, for the obser-
ver the DRU is determined by the pitch of the MLA.
For this reason, to build one integral imaging moni-
tor with high resolution, one should use anMLAwith
very small pitch (p). Preliminary realizations of inte-
gral imaging screens have used MLA of p � 1.14 mm
in hexagonal grid [12] or of p � 1.0 mm in rectangu-
lar grid [76]. However, these resolutions are quite
poor, and much effort still must be made in the forth-
coming years to reduce the DRU to a desirable level.

The second problem that has to be overcome is the
angular resolution. The problem of angular resolu-
tion is closely linked to the problem of lateral resolu-
tion of the sensor. The number of pixels under each
microlens determines the angular resolution limit.
The higher the number of pixels is, the better the an-
gular resolution becomes. This is the bottleneck of re-
solution of integral imaging monitors at the moment.
Practically, although a large number of pixels per EI
would be desirable, a density of about 16 × 16 pixels
per microlens would typically provide a soft transi-
tion between different views. A good integral ima-
ging monitor would require the use of microlenses

with pitch about p � 250 μm and width of pixels
w ≈ 16 μm. Current realizations of integral imaging
displays (w � 79 μm in [76] and w � 75 μm in [12])
are still far from these numbers. It is worth noting
that at present there are competitions in producing
screens with very high resolution among smartphone
manufacturers [90]. It is expectable that these
competitions will result in the mass production of
ultrahigh-resolution displays, which will be very
useful for the implementation of integral imaging
monitors.

The third problem is the pseudoscopic, or depth re-
versed, nature of optically reconstructed images
when the EIs are displayed in devices with no prepro-
cessing. Okano et al. proposed a simple solution to
this problem [50]. They proposed to capture the
EIs with the standard pickup architecture. Then,
each EI is rotated by 180° around its center. Taking
into account the pixilated structure of the EIs, this
operation simply implies a local pixel mapping. As
we show in Fig. 9 when these rotated EIs are dis-
played at a distance gv � g − 2f2∕�d-f �, a virtual,
undistorted orthoscopic image is obtained at a dis-
tance dv � d-f , from the lenslet array. Note that,
to obtain a reconstructed virtual image, two condi-
tions are required. First, each microlens must pro-
duce a virtual image of its corresponding EI in the
reference plane. On the other hand, the set of ray
cones corresponding to the same point of the object
must intersect in the same virtual point of the recon-
structed image, as shown in Fig. 9. Although in this
scheme there is no degradation of the image due to
the introduction of additional elements or stages, it
still has the drawback that the reconstructed images
are virtual.

More recently, a more flexible digital method is re-
ported that allows the calculation of a new set of syn-
thetic EIs to be used in a display configuration that
can be essentially different from the one used in the
capture. The new algorithm has been called smart
pseudoscopic-to-orthoscopic conversion (SPOC) algo-
rithm [58]. It allows the calculation of EIs ready to be
displayed in an integral imaging monitor in which
the pitch, the microlenses focal length, the number
of pixels per EI, the depth position of the reference
plane, and even the grid geometry of the MLA can
be selected to fit the conditions of the display archi-
tecture. In Fig. 10 we show a demonstration of the
utility of the algorithm.

Fig. 9. (Color online) Schematic drawing of the orthoscopic,
virtual reconstruction.
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The last important problem to be faced for the im-
plementation of integral imaging monitors is the lim-
ited viewing angle. The viewing angle of these
devices is determined by the angle subtended by any
EI from the center of the corresponding microlens
(Fig. 1). Naturally, the first direction of research ef-
fort must be addressed to the production of micro-
lenses with high numerical aperture and free from
aberrations. One optical solution to this problem
comes from the use of a telecentric relay for the par-
allel acquisition and display of three sets of EIs [77].
Although elegant, this method cannot be used when
one aims to build flat integral imaging monitors. A
different method was suggested by Choi et al. [78].
The idea is to capture three sets of EIs and display
them simultaneously, with three different barrier
arrangements, so that the viewing angle could be ex-
panded by factor of three. To do that, Choi et al. sug-
gested tilting the barrier with enough speed to
induce afterimage effect and synchronizing the dis-
play of the corresponding EIs. Another clever method
was recently proposed in [79]. In this paper the
authors have proposed the use of MLA arranged in
hexagonal grid both in the capture and also in the
display. By use of capture display in the FInI config-
uration, or by proper application of the SPOC algo-
rithm, it is possible to compose a set of EIs much
wider in the horizontal than in the vertical direction.
Then, by tilting the MLA in the way shown in Fig. 11,
it is possible to enlarge the horizontal viewing
angle by factor 1.75 but at the cost of reducing the
vertical viewing angle by a factor of 2. Note that this
reduction has little relevance since horizontal paral-
lax is much more demanded by our visual system.

B. Computational Volumetric Reconstruction

1. Computational Reconstruction in Conventional
Integral Imaging
3D reconstruction of images can be achieved compu-
tationally by simulating the optical backprojection of
the multiple 2D images in computers [25,66,80–82].
There are numerous activities in this domain in the
computer science community (e.g., [66,82,89]), and
there are numerous algorithms to accomplish this
task, including restoring occluded objects [82]. One
reconstruction method uses a computer-synthesized
virtual pinhole array to inversely map EIs into the

object space as illustrated in Fig. 12. In this method,
each EI is projected on the desired reconstruction
plane and overlaps with all other backprojected
EIs. With this process, volumetric 3D information of
a scene can be represented by multiple plane-by-
plane images.

For simplification, we assume that the number of
pixels of the reconstructed 3D image is the same as
the one of each EI. The 3D reconstructed image con-
sists of the average of superimposed pixels from all
the EIs. The computational reconstruction algorithm
can be written as follows:

R�x; y; z� � 1
O�x; y�

XK−1

k�0

XL−1
l�0

× Ekl

�
x − k

Nx × p
cx ×M

; y − l
Ny × p

cy ×M

�
; (3)

where R�x; y; z� represents the intensity of the recon-
structed 3D image at depth z, x and y are the index
of pixels, Ekl represents the intensity of the kth col-
umn and lth row EI, Nx, Ny are the total number of
pixels for each EI, M is the magnification factor and
equals z∕g, g is the focal length, p is the pitch be-
tween image sensors, cx, cy are the size of the image
sensor, andO�x; y� is the overlapping number matrix.

Compared with 2D reconstruction, 3D reconstruc-
tion may mitigate the effect of occlusion because,
when the reconstruction plane is located at the range

Fig. 10. (Color online) (a) Collection of EIs obtained with a conventional integral imaging pickup system, (b) synthetic EIs calculated with
SPOC, and (c) reconstruction of the orthoscopic, floating 3D image through an MP4 player.

Fig. 11. (Color online) Method for the enlargement of the horizon-
tal viewing angle in integral imaging monitors.
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of the object of interest, only that object is in focus,
while occlusion and background are out of focus.
Figure 13 shows 3D experimental results by using
the computational reconstruction method in an
outdoor environment. A subset of EIs is shown in
Fig. 13(a). A total of 37 EIs are used in the 3D recon-
struction. In the 3D scene, the fronts of the red and
gray cars are located at approximately 4.5 and 5.3 m
away from the pickup plane, respectively. The red car
is heavily occluded by the trees. 3D reconstructed
images at z � 4.5 m and z � 5.3 m and image details
are given in Fig. 13(b), where the profile of the red car
is recognizable despite the fact that it is occluded by
the trees in each EI.

2. Computational Reconstruction in an ADS
System
In an ADS system, an image sensor moves parallel
to its optical axis to record longitudinal perspective
information of a 3D scene (see Fig. 7). The recon-
structed images can be achieved by superposing
the magnified EIs. Assume that the total number
of EIs is K. The reconstructed image R�x; y; z� at dis-
tance z from the nearest pickup position is given as
follows [70]:

R�x;y; z� � 1
O�x;y�

XK−1

k�0

Ek

�
x
Mk

;
y
Mk

�
with Mk �

zk
z0

;

(4)

where z0 is the distance between the nearest pickup
position and the reconstruction plane (z) and zk is the
distance between the kth pickup position and the re-
construction plane. Compared to the computational
reconstruction method in conventional integral ima-
ging [see Eq. (3)], the magnification changes with the
different pickup positions and the overlapped EIs do
not have lateral shift from each other.

Figure 14 shows a subset of EIs and the recon-
structed images of an object in front and behind a
concentric ring occluding pattern. The center of the
ring pattern coincides with the optical axis and hence
is always in focus (no parallax) in the reconstructed
images, while more parallax (more blurring) is
shown in the periphery (see the discussion in
Section 3).

3. Computational Reconstruction in Integral
Imaging with Randomly Distributed Sensors
In integral imaging with randomly distributed
sensors, affine transformation can be conveniently
used to model the relationship between object space
and image space for each sensor. If provided with re-
lative position between the kth randomly distributed
sensor and the reference sensor at X and Y direc-
tions, �pxk; pyk�, the reconstructed 3D images can
be obtained as follows [69]:

R�x;y;z� �
XK−1

k�0

Ek

�
x
Mk

−
Nx ×pxk

cx ×M
;
y
Mk

−
Ny ×pyk

cy ×M

�
with

Mk �
zk
z
; (5)

where z is the depth of the reconstruction plane mea-
sured from the reference sensor and zk is the distance

Fig. 12. (Color online) Illustration of computational reconstruc-
tion method in integral imaging.

Fig. 13. (Color online) Computational reconstruction results
using integral imaging data capture. (a) Three examples of EIs and
(b) reconstructed 3D images at z � 4.5 m and z � 5.3 m.

Fig. 14. (Color online) Computational reconstruction results in
ADS system. (a) EIs. The left is the closest EI to the scene, the right
is the farthest one. (b) Reconstructed 3D images, where the green
car and the red fire truck are in focus, respectively.
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between the kth sensor and the reconstruction plane.
In fact, Eq. (5) can be treated as a general computa-
tional reconstruction method, which considers both
the different magnifications and lateral shift among
EIs.

C. 3D Profilometric Reconstruction

Instead of obtaining plane-by-plane reconstruction
images discussed above, a 3D profile of a scene can
also be reconstructed [17]. A spectral radiation pat-
tern (SRP) can be used to capture the radiation in-
tensity at a certain wavelength and direction in
object space. In [17], a method has been proposed
to infer the depth of Lambertian surfaces from the
statistics of the SRP in a multiview imaging system.

For each point in 3D space, �x; y; z�, the SRP,
L�θ;ϕ; λ�, describes its radiation intensity based on
its direction �θ;ϕ� and wavelength (λ). In practice,
each pixel of an image provides an SRP along the as-
sociated chief ray. For simplification, an integral
imaging scheme, where image sensors are located
on a plane K × L grid, is considered. The ray diagram
between two points in space and the corresponding
images in the integral imaging system are illustrated
in Fig. 15. Note that, for clarity, this figure only
shows the y-z plane coordinate system. For an object
surface point, Po�xo; yo; zo�, K × L sample intensities
of this point are collected by K × L image sensors
from nonidentical perspectives (different SRP).
However, the intensities (λ) among these SRP are
expected to be correlated with each other if this
point satisfies the assumption of a Lambertian or
semi-Lambertian point. If the point, Pv�xv; yv; zv�, is
in free space, that is, it does not belong to any
object surfaces in 3D space, then K × L collected
sample intensities are more likely to vary because
these samples are probably from different parts of
the scene (see Fig. 15). This intensity variation
among the collected SRP can be used to estimate
the depth of object points with the following
statement:

ẑ�x; y� � argmin
z∈Z

XK−1

k�0

XL−1
l�0

�L�θkl;φkl; λ� − L̄�θ;φ; λ��2; (6)

where L̄ denotes the mean of the SRP over all the
directions and Z is the range of objects of interest.
Equation (6) can be explained as the variance of the
SRP function and is expected to reach a local mini-
mum at the real depth of object points. Once the
depth of object points is recovered, one can recon-
struct 3D profile of a scene.

Figure 16 illustrates the recovered depth informa-
tion from an ensemble of 121 EIs based on Eq. (6).
The poorly estimated points on the helicopter win-
dow are due to the specular reflection off the glossy
surface, which departs from Lambertian surface
assumption.

5. Applications of 3D Integral Imaging

In this section, we present several applications of 3D
integral imaging system in various fields. These ap-
plications further demonstrate the advantages of
this 3D sensing and imaging system.

A. 3D Imaging of Objects in Turbid Water

Integral imaging can be used for 3D visualization
of underwater objects. Underwater imaging is
inherently different from aerial imaging because of
absorption and scattering of light from various un-
derwater particles and molecules. In [27], a statisti-
cal image processing approach and computational
3D reconstruction algorithms in integral imaging
have been proposed to remedy the effects of scatter-
ing and to visualize 3D scene in turbid water. To
obtain the actual reconstruction distance, this meth-
od considers the geometrical alteration due to the
difference in refraction index of water. Figure 17
demonstrates the 3D visualization results in turbid
water. A 3D scene in clear water and one EI in turbid
water are shown in Fig. 17(a) and Fig. 17(b), respec-
tively. Figure 17(c) and Fig. 17(d) show the 3D recon-
struction results in clear water and in turbid water,
respectively. It is evident that the reconstructed

Fig. 15. (Color online) Ray diagram for object surface point and
free-space point in integral imaging.

Fig. 16. (Color online) Ray diagram (3D profile) for object surface
points and free-space points in integral imaging.
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image for turbid water [Fig. 17(d)] cannot visualize
the objects due to light scattering. The 3D recon-
struction results with statistical processing [27] in
turbid water are illustrated in Fig. 17(e) and
Fig. 17(f), which focus on the insect (bug) and the
small fish, respectively.

B. Photon Counting and Photon-Starved 3D Visualization

Photon counting integral imaging has been proposed
to perform 3D visualization [21,84] and 3D target re-
cognition [20,23,83] in photon-starved conditions or
very low light levels in the scene. 3D reconstruction
of a photon-starved scene can be performed by apply-
ing computational reconstruction algorithm based on
various algorithms such as the maximum likelihood
estimator [21].

In general, photon counting images have far fewer
photons than the conventional irradiance images
due to extremely low light level environments. As a
result, they have far fewer nonzero pixels than conven-
tional intensity images. Thus, many of the details con-
tained in the original 3D scene disappear. To achieve
3D visualization, some approaches based on total
variation constraint [24,84,87] have been applied to
the photon counting integral imaging system. In
[24], total variation maximum likelihood expectation
maximization has been applied to restore the recon-
structed 3D images, and in [84], an iterative method
to restore photon counting EIs based the on total var-
iation maximum a posteriori expectation maximiza-
tion (MAP-EM) algorithm and the photon counting
detection model has been presented.

The photon counting imaging process follows the
photon counting detection model; the probability of
counting c photons is given by the Poisson probability
mass function [30]:

P�cjW� � �W�ce−W
c!

; c � 0; 1; 2;…; (7)

where c represents the number of observed photons
and W is related to integrated intensity in a certain
time period and a constant. In fact, the Poisson para-
meter, W, for the photon counts at each pixel of the
photon counting image is proportional to the irradi-
ance of image pixel [83].

Based on theMAP-EM algorithm [86], the restored
object intensity, r, can be obtained by the following
iterative equation:

r�n�1�
j �

r�n�jP
iHij � β�∂U�r�n��∕∂rj�

X
i

HijciP
k
Hikr

�n�
k

; (8)

where Hij is constructed by discrete point spread
function of the pickup imaging lens, U�r� is the prior
energy functional (e.g., total variation constraint
[85]), β is a regularization parameter, n is the itera-
tion time, and i, j, k are pixel indices. The iteration is
stopped whenmean-square error between rn�1 and rn

is smaller than a given threshold.
In Fig. 18, two groups of the simulated photon

counting EIs are shown. Figures 18(a) and 18(c) show
the EIs, and the corresponding restored EIs by using
the total variation MAP-EM algorithm are shown
in Figs. 18(b) and 18(d). Np is the total number of
photons in each image.

Total variation constraint has been found to be an
efficient prior for reconstruction of integral images
captured with photon counting sensors [24]. In [87]
it was also demonstrated to be efficient for recon-
struction of photon-starved integral images captured
with conventional CCD or CMOS sensors. When
conventional image sensors are used, the image is
typically corrupted by thermal and readout noise in
addition to the Poisson noise caused by the random

Fig. 17. 3D visualization in turbid water. (a) 3D scene in clear
water, (b) one sample of EI in turbid water, (c), (d) 3D reconstruc-
tion results in clear water and in turbid water, respectively, and (e),
(f) 3D reconstruction results in turbid water at various depth
planes with statistical image processing.

Fig. 18. (a), (c) Binary photon counting EIs when Np � 10;000
and Np � 30;000, respectively and (b), (d) corresponding image
restoration results using TV MAP.
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photon arrival process. Therefore, significantly lar-
ger photon flux is required compared with photon
counting sensors. Figure 19(a) shows a simulation
of a captured EI with commercial cooled camera. The
signal-to-noise ratio (SNR) in this image is 0.18;
therefore, the object is not distinguishable. However,
by applying the total variation maximum likelihood
expectation algorithm on an array of 7 × 7 EIs, the
image in Fig. 19(b) is obtained, in which the airplane
object is clearly distinguishable, despite the EI
having an SNR much lower than 1. In [87], real
experimental results have shown the successful re-
construction of integral images captured with con-
ventional camera illuminated by less than four
photons per pixels on the average.

C. 3D Tracking of Occluded Objects Using Integral
Imaging

As discussed previously, the computational recon-
struction method in integral imaging can reduce
the effect of occlusion. As a result, tracking occluded
objects in 3D space is feasible. In [32], tracking of
multiple occluded 3D objects using a region tracking
method based on statistical Bayesian formulation
has been proposed in the integral imaging system.
It is assumed that the background is stationary for
each frame and the reconstructed pixel intensities
of both background and multiple objects are indepen-
dent identically distributed. The background region
and object region followGaussian andGamma distri-
butions, respectively. Within the Bayesian frame-
work, the parameters of the likelihood functions of
the background and the object region are estimated
based on appropriate prior assumptions. At each
frame, the 3D scene is reconstructed, represented
plane by plane. The 3D locations of the objects are
obtained by maximizing the geodesic distance be-
tween the log-likelihood of the reconstructed back-
ground and objects across all the 2D reconstructed
planes.

Figure 20 shows a subset of EIs used in occluded
object tracking experiments. Figure 21 illustrates
the 3D tracking experimental results performed with
varying target orientations and scene illumination.
Experimental results show that the tracking method
is robust to partial occlusion and unknown back-
ground scene and works with objects with unknown
position, range, rotation, scale, and illumination.

D. 3D Microscopy Using Integral Imaging for Visualization
and Identification of Cells

Integral imaging has been applied to 3D microscopy
[29–31,56] and identification of biological micro-
organisms [28]. To visualize 3D information of
micro-objects, uniformly magnified 2D Eis are
obtained from computer-synthesized EIs [29].
Figure 22 illustrates the 3D sensing and visualiza-
tion of the micro-organisms using integral imaging
microscopy. Cells and/or micro-organism identifica-
tion and classification [28] has been performed on
the 3D reconstructed images by using statistical
pattern recognition.

E. 3D Polarimetric Integral Imaging

Light polarization can provide an important visual
extension compared to intensity-only imagery.
Polarimetric imaging measures the polarization
states of light coming from all the points in a 3D scene
andenhances theunderstandingabout the surfaces of
objects.A3Dpolarimetric integral imagingsystemhas
been proposed by using degree of polarization (DoP)
images under natural illumination conditions [33].
The measured Stokes parameters are utilized to gen-
erate DoP images. By using DoP information and the
original EIs, 3D polarimetric reconstruction has been
performed by a modified computational reconstruc-
tion method. Instead of using all the pixels from the
shifted EIs, as is the case in conventional computa-
tional reconstruction method (see Section 4.B.1), only
thepixelswhoseDoP is greater thanagiven threshold
(p) are used to perform the 3D image reconstruction.
The 3D polarimetric integral imaging may be
used to distinguish objects with specular-reflection
surfaces (metal, glass) and objects with diffuse-reflec-
tion surfaces (soil, grass).

Figure 23 shows the experimental results of the 3D
polarimetric integral imaging system. In the scene,
two cars (objects) are located approximately 530 mm
away, with a tree (450 mm away) in front of them
(occlusion), and some others (720 mm away) behind
the cars (background). Figure 23(a) illustrates three
examples among 36 EIs. The 3D image reconstruc-
tion results in both conventional integral imaging

Fig. 19. (a) Simulated EI obtained with conventional camera
having an SNR � 0.18 and (b) reconstructed image.

Fig. 20. (Color online) Subset of EIs (each 2784 × 1856 pixels) in
3D tracking experiments of occluded objects.
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and the 3D polarimetric integral imaging are
shown in Fig. 23(b) and Fig. 23(c), respectively. In
Fig. 23(c), only the cars show up, while the occlusion
and the background do not appear on the recon-
struction images.

F. Multidimensional Optical Sensing and Imaging

A multidimensional optical sensor and imaging sys-
tem using integral imaging has been proposed [91].
This is an extension of conventional integral imaging
to incorporate multimodality into sensing and recon-
struction. In [91], polarimetric and multispectral
imaging is used to reconstruct a fully integrated
multidimensional scene. The multidimensional re-
constructed scene contains more information than
single 2D or 3D images. The multidimensional
imaging system may utilize polarimetric imaging,
hyperspectral imaging, 3D spatial imaging, etc., to
reconstruct the multidimensional integrated scene.
The system can be implemented with separate
polarimetric sensors and spectral sensors and then
integrate the multidimensional data. Or, a single
polarimetric and spectral sensor can be used for a
single exposure multidimensional sensing.

6. Conclusion

We have presented a literature overview of the ad-
vances in the image capture, the display and the re-
construction stages, and applications of 3D integral
imaging systems. Integral imaging was originally
invented in 1908, and various research and applica-
tions related to this technique have been resurrected
over the past decade. The remarkable development
of multiview 3D imaging during the past decade
owes to commercially availability and advances of
high-quality 2D imaging/display devices, electronic
sensors, optical components, and computational re-
sources. The advantages of integral imaging lie in
its simplicity and the ability to reconstruct 3D infor-
mation without costly devices and demanding condi-
tions. The further advancements in display devices
with smaller pixel size may bring integral imaging
into a new level in which we can potentially achieve
high-resolution 3D display. In addition, multiview

Fig. 21. (Color online) 3D tracking results of two moving cars on
the reconstructed images in integral imaging. (a) Second temporal
frame. (b) Frame nine. Here the scene illumination is reduced to
one half and the left car is rotated. (c) Frame 14. Here both cars are
rotated. (d) Frame 17. Here the right car is rotated. (e) Frame 27.
Here the scene illumination is doubled and the left car is rotated.

Fig. 22. (Color online) Integral imaging 3D microscopy and auto-
mated cell identification.

Fig. 23. (Color online) 3D polarimetric integral imaging experi-
mental results. (a) Subset of EIs. (b) Reconstruction results of con-
ventional integral imaging at 450 mm, 530 mm, and 720 mm.
(c) Reconstruction results of the 3D polarimetric integral imaging
with p � 0.2 mm.
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3D imaging has been extended into wider fields,
including medical imaging, entertainment, indus-
trial manufacturing, and defense and security.

References
1. A. Sokolov, “Autostereoscopy and integral photography by

Professor Lippmann’s method,” in Izd. MGU (Moscow State
University, 1911).

2. H. E. Ives, “Optical properties of a Lippman lenticulated
sheet,” J. Opt. Soc. Am. 21, 171 (1931).

3. C. B. Burckhardt, “Optimum parameters and resolution lim-
itation of integral photography,” J. Opt. Soc. Am. A 58, 71–74
(1968).

4. T. Okoshi, “Three-dimensional displays,” Proc. IEEE 68,
548–564 (1980).

5. T. Okoshi, Three-Dimensional Imaging Techniques (Academic,
1976).

6. B. Javidi, F. Okano, and J. Y. Son,Three-Dimensional Imaging,
Visualization, and Display (Springer, 2009).

7. L. Yang, M. McCormick, and N. Davies, “Discussion of the op-
tics of a new 3-D imaging system,” Appl. Opt. 27, 4529–4534
(1988).

8. F. Okano, J. Arai, K. Mitani, and M. Okui, “Real-time integral
imaging based on extremely high resolution video system,”
Proc. IEEE 94, 490–501 (2006).

9. J. Arai, F. Okano, H. Hoshino, and I. Yuyama, “Gradient-index
lens-array method based on real-time integral photography
for three-dimensional images,” Appl. Opt. 37, 2034–2045
(1998).

10. H. Hoshino, F. Okano, H. Isono, and I. Yuyama, “Analysis of
resolution limitation of integral photography,” J. Opt. Soc. Am.
A 15, 2059–2065 (1998).

11. T. Mishina, “3D television system based on integral photogra-
phy,” in Proceedings of the Picture Coding Symposium (PCS),
2010 (IEEE, 2010), p. 20.

12. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M.
Yoshimura, M. Furuya, and M. Sato, “Integral three-
dimensional television using a 33-megapixel imaging system,”
J. Disp. Technol. 6, 422–430 (2010).

13. O. Matoba, E. Tajahuerce, and B. Javidi, “Real-time three-
dimensional object recognition with multiple perspectives
imaging,” Appl. Opt. 40, 3318–3325 (2001).

14. S. Kishk and B. Javidi, “Improved resolution 3D object sen-
sing and recognition using time multiplexed computational
integral imaging,” Opt. Express 11, 3528–3541 (2003).

15. S. H. Hong and B. Javidi, “Distortion-tolerant 3D recognition
of occluded objects using computational integral imaging,”
Opt. Express 14, 12085–12095 (2006).

16. R. Schulein, C. M. Do, and B. Javidi, “Distortion-tolerant 3D
recognition of underwater objects using neural networks,” J.
Opt. Soc. Am. A 27, 461–468 (2010).

17. M. DaneshPanah and B. Javidi, “Profilometry and optical
slicing by passive three-dimensional imaging,” Opt. Lett.
34, 1105–1107 (2009).

18. J. H. Park andK.M. Jeong, “Frequency domain depth filtering
of integral imaging,” Opt. Express 19, 18729–18741 (2011).

19. A. Stern and B. Javidi, “3D image sensing, visualization, and
processing using integral imaging,” Proc. IEEE 94, 591–607
(2006).

20. S. Yeom, B. Javidi, and E. Watson, “Three-dimensional
distortion-tolerant object recognition using photon-counting
integral imaging,” Opt. Express 15, 1513–1533 (2007).

21. B. Tavakoli, B. Javidi, and E. Watson, “Three dimensional
visualization by photon counting computational integral ima-
ging,” Opt. Express 16, 4426–4436 (2008).

22. I. Moon and B. Javidi, “Three-dimensional recognition of
photon-starved events using computational integral imaging
and statistical sampling,” Opt. Lett. 34, 731–733 (2009).

23. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimen-
sional object recognition with photon counting imagery in the
presence of noise,” Opt. Express 18, 26450–26460 (2010).

24. D. Aloni, A. Stern, and B. Javidi, “Three-dimensional photon
counting integral imaging reconstruction using penalized

maximum likelihood expectation maximization,” Opt.
Express 19, 19681–19687 (2011).

25. S. H. Hong and B. Javidi, “Three-dimensional visualization of
partially occluded objects using integral imaging,” J. Disp.
Technol. 1, 354–359 (2005).

26. I. Moon and B. Javidi, “Three-dimensional visualization of
objects in scattering medium by use of computational integral
imaging,” Opt. Express 16, 13080–13089 (2008).

27. M. Cho and B. Javidi, “Three-dimensional visualization
of objects in turbid water using integral imaging,” J. Disp.
Technol. 6, 544–547 (2010).

28. B. Javidi, I. Moon, and S. Yeom, “Three-dimensional identifi-
cation of biological microorganism using integral imaging,”
Opt. Express 14, 12096–12108 (2006).

29. J. S. Jang and B. Javidi, “Three-dimensional integral imaging
of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).

30. M. Levoy, Z. Zhang, and I. McDowall, “Recording and control-
ling the 4D light field in a microscope using microlens arrays,”
J. Microsc. 235, 144–162 (2009).

31. D. Shin, M. Cho, and B. Javidi, “Three-dimensional optical mi-
croscopy using axially distributed image sensing,” Opt. Lett.
35, 3646–3648 (2010).

32. Y. Zhao, X. Xiao, M. Cho, and B. Javidi, “Tracking of
multiple objects in unknown background using Bayesian
estimation in 3D space,” J. Opt. Soc. Am. A 28, 1935–1940
(2011).

33. X. Xiao, B. Javidi, G. Saavedra, M. Eismann, andM.Martinez-
Corral, “Three-dimensional polarimetric computational
integral imaging,” Opt. Express 20, 15481–15488 (2012).

34. C. Wheatstone, “Contributions to the physiology of vision.—
Part the first. On some remarkable, and hitherto unobserved,
phenomena of binocular vision,” Philos. Trans. R. Soc. Lond.
128, 371–394 (1838).

35. W. Rollmann, “Zwei neue stereoskopische Methoden,” Ann.
Phys. 166, 186–187 (1853).

36. D. S. Kim, S. M. Park, J. H. Jung, and D. C. Hwang, “51.2: new
240Hz drivingmethod for full HD&high quality 3DLCDTV,”
SID Symp. Dig. Tech. Pap. 41, 762–765 (2010).

37. S. S. Kim, B. H. You, H. Choi, B. H. Berkeley, D. G. Kim, and
N. D. Kim, “World’s first 240 Hz TFT‐LCD technology for full‐
HDLCD‐TVand its application to 3D display,” SID Symp. Dig.
Tech. Pap. 40, 424–427 (2009).

38. H. Kang, S. D. Roh, I. S. Baik, H. J. Jung, W. N. Jeong, J. K.
Shin, and I. J. Chung, “3.1: a novel polarizer glasses‐type 3D
displays with a patterned retarder,” SID Symp. Dig. Tech.
Pap. 41, 1–4 (2010).

39. C. Slinger, C. Cameron, and M. Stanley, “Computer-generated
holography as a generic display technology,” Computer 38,
46–53 (2005).

40. R. B. A. Tanjung, X. Xu, X. Liang, S. Solanki, Y. Pan, F. Farbiz,
B. Xu, and T. C. Chong, “Digital holographic three-
dimensional display of 50-Mpixel holograms using a two-
axis scanning mirror device,” Opt. Eng. 49, 025801
(2010).

41. P. A. Blanche, A. Bablumian, R. Voorakaranam, C.
Christenson, W. Lin, T. Gu, D. Flores, P. Wang, W. Y. Hsieh,
and M. Kathaperumal, “Holographic three-dimensional tele-
presence using large-area photorefractive polymer,” Nature
468, 80–83 (2010).

42. M. Holroyd, I. Baran, J. Lawrence, and W. Matusik, “Comput-
ing and fabricating multilayer models,” ACM Trans. Graph.
30, 187 (2011).

43. A. Marraud and M. Bonnet, “Restitution of stereoscopic
picture by means of a lenticular sheet,” Proc. SPIE 0402,
129–132 (1983).

44. Mashitani, “Autostereoscopic video display with a parallax
barrier having oblique apertures,” U.S. patent 7,317,494
(8 January 2008).

45. H. J. Lee, H. Nam, J. D. Lee, H. W. Jang, M. S. Song, B. S. Kim,
J. S. Gu, C. Y. Park, and K. H. Choi, “A high resolution
autostereoscopic display employing a time division parallax
barrier,” SID Symp. Dig. Tech. Pap. 37, 81–84 (2006).

46. G. Hamagishi, “Analysis and improvement of viewing
conditions for two‐view and multi‐view displays,” SID Symp.
Dig. Tech. Pap. 40, 340–343 (2009).

1 February 2013 / Vol. 52, No. 4 / APPLIED OPTICS 559



47. T. Inoue and H. Ohzu, “Accommodative responses to stereo-
scopic three-dimensional display,” Appl. Opt. 36, 4509–4515
(1997).

48. F. L. Kooi and A. Toet, “Visual comfort of binocular and 3D
displays,” Displays 25, 99–108 (2004).

49. G. Lippmann, “Epreuves reversibles donnant la sensation du
relief,” J. Phys. 7, 821–825 (1908).

50. F. Okano, H. Hoshino, J. Arai, and I. Yuyama, “Real-time
pickup method for a three-dimensional image based on
integral photography,” Appl. Opt. 36, 1598–1603 (1997).

51. J. Arai, H. Hoshino, M. Okui, and F. Okano, “Effects of focus-
ing on the resolution characteristics of integral photography,”
J. Opt. Soc. Am. A 20, 996–1004 (2003).

52. D. H. Shin, E. S. Kim, and B. Lee, “Computational reconstruc-
tion of three-dimensional objects in integral imaging using
lenslet array,” Jpn. J. Appl. Phys. 44, 8016–8018 (2005).

53. B. Tavakoli, M. Daneshpanah, B. Javidi, and E. Watson, “Per-
formance of 3D integral imaging with position uncertainty,”
Opt. Express 15, 11889–11902 (2007).

54. J. H. Park, G. Baasantseren, N. Kim, G. Park, J. M. Kang, and
B. Lee, “View image generation in perspective and ortho-
graphic projection geometry based on integral imaging,”
Opt. Express 16, 8800–8813 (2008).

55. J. Y. Son, S. H. Kim, D. S. Kim, B. Javidi, and K. D. Kwack,
“Image-forming principle of integral photography,” J. Disp.
Technol. 4, 324–331 (2008).

56. Y. T. Lim, J. H. Park, K. C. Kwon, and N. Kim, “Resolution-
enhanced integral imaging microscopy that uses lens array
shifting,” Opt. Express 17, 19253–19263 (2009).

57. M. U. Erdenebat, G. Baasantseren, and J. H. Park, “Full-
parallax 360 degrees integral imaging display,” in Proceedings
of the International Meeting on Information Display (Korean
Information Display Society, 2010), pp. 812–813.

58. H. Navarro, R. Martínez-Cuenca, G. Saavedra, M. Martínez-
Corral, and B. Javidi, “3D integral imaging display by smart
pseudoscopic-to-orthoscopic conversion (SPOC),”Opt. Express
18, 25573–25583 (2010).

59. H. Geng, Q. H. Wang, L. Li, and D. H. Li, “An integral-imaging
three-dimensional display with wide viewing angle,” J. SID
19, 679–684 (2011).

60. M. Cho and B. Javidi, “Optimization of 3D integral imaging
system parameters,” IEEE J. Disp. Technol. 8, 357–360 (2012).

61. A. Yöntem and L. Onural, “Integral imaging using phase-only
LCoS spatial light modulators as Fresnel lenslet arrays,” J.
Opt. Soc. Am. A 28, 2359–2375 (2011).

62. H. Navarro, R. Martínez-Cuenca, A. Molina-Martín, M.
Martínez-Corral, G. Saavedra, and B. Javidi, “Method to re-
medy image degradations due to facet braiding in 3D inte-
gral-imaging monitors,” J. Disp. Technol. 6, 404–411 (2010).

63. F. Okano, J. Arai, H. Hoshino, and I. Yuyama, “Three-
dimensional video system based on integral photography,”
Opt. Eng. 38, 1072–1077 (1999).

64. N. Davies, M. McCormick, and L. Yang, “Three-dimensional
imaging systems: a new development,” Appl. Opt. 27,
4520–4528 (1988).

65. E. H. Adelson and J. Y. A. Wang, “Single lens stereo with a
plenoptic camera,” IEEE Trans. Pattern Anal. Mach. Intell.
14, 99–106 (1992).

66. M. Levoy, “Light fields and computational imaging,” Compu-
ter 39, 46–55 (2006).

67. J. H. Park, K. Hong, and B. Lee, “Recent progress in three-
dimensional information processing based on integral ima-
ging,” Appl. Opt. 48, H77–H94 (2009).

68. J. S. Jang and B. Javidi, “Three-dimensional synthetic
aperture integral imaging,” Opt. Lett. 27, 1144–1146 (2002).

69. M. DaneshPanah, B. Javidi, and E. A. Watson, “Three dimen-
sional imaging with randomly distributed sensors,” Opt.
Express 16, 6368–6377 (2008).

70. R. Schulein,M.DaneshPanah, andB. Javidi, “3D imagingwith
axially distributed sensing,” Opt. Lett. 34, 2012–2014 (2009).

71. X. Xiao, M. DaneshPanah, M. Cho, and B. Javidi, “3D integral
imaging using sparse sensors with unknown positions,” J.
Disp. Technol. 6, 614–619 (2010).

72. Y. Igarashi, H. Murata, and M. Ueda, “3D display system
using a computer generated integral photography,” Jpn. J.
Appl. Phys. 17, 1683–1684 (1978).

73. M. Halle, “Multiple viewpoint rendering,” in Proceedings of
the 25th Annual Conference on Computer Graphics and Inter-
active Techniques (1998), pp. 243–254.

74. R. Yang, X. Huang, S. Li, and C. Jaynes, “Toward the light
field display: autostereoscopic rendering via a cluster of
projectors,” IEEE Trans. Vis. Comput. Graph. 14, 84–96
(2008).

75. M. Martínez-Corral, B. Javidi, R. Martínez-Cuenca, and G.
Saavedra, “Multifacet structure of observed reconstructed in-
tegral images,” J. Opt. Soc. Am. A 22, 597–603 (2005).

76. M. Martínez-Corral, H. Navarro, R. Martínez-Cuenca, G.
Saavedra, and B. Javidi, “Full parallax 3-D TV with program-
mable display parameters,” Opt. Photon. News 22(12),
50–50 (2011).

77. R. Martínez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and
M. Martinez-Corral, “Enhanced viewing-angle integral ima-
ging by multiple-axis telecentric relay system,” Opt. Express
15, 16255–16260 (2007).

78. H. Choi, S. W. Min, S. Jung, J. H. Park, and B. Lee, “Multiple-
viewing-zone integral imaging using a dynamic barrier array
for three-dimensional displays,” Opt. Express 11, 927–932
(2003).

79. M. Miura, J. Arai, T. Mishina, M. Okui, and F. Okano,
“Integral imaging system with enlarged horizontal viewing
angle,” Proc. SPIE 8384, 83840O (2012).

80. S. H. Hong, J. S. Jang, and B. Javidi, “Three-dimensional
volumetric object reconstruction using computational integral
imaging,” Opt. Express 12, 483–491 (2004).

81. H. Arimoto and B. Javidi, “Integral three-dimensional im-
aging with digital reconstruction,” Opt. Lett. 26, 157–159
(2001).

82. V. Vaish, M. Levoy, R. Szeliski, C. L. Zitnick, and S. B. Kang,
“Reconstructing occluded surfaces using synthetic apertures:
stereo, focus and robust measures,” in Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (IEEE, 2006), pp. 2331–2338.

83. S. Yeom, B. Javidi, and E. Watson, “Photon counting passive
3D image sensing for automatic target recognition,” Opt.
Express 13, 9310–9330 (2005).

84. X. Xiao and B. Javidi, “3D Photon counting integral imaging
with unknown sensor positions,” J. Opt. Soc. Am. A 29,
767–771 (2012).

85. V. Y. Panin, G. L. Zeng, and G. T. Gullberg, “Total vari-
ation regulated EM algorithm,” IEEE Trans. Nucl. Sci. 46,
2202–2210 (1999).

86. P. J. Green, “Bayesian reconstructions from emission tomogra-
phy data using a modified EM algorithm,” IEEE Trans. Med.
Imag. 9, 84–93 (1990).

87. A. Stern, D. Aloni, and B. Javidi, “Experiments with three-
dimensional integral imaging under low light levels,” IEEE
Photonics J. 4, 1188–1195 (2012).

88. D. Shin, M. Daneshpanah, and B. Javidi, “Generalization of
three-dimensional N-ocular imaging systems under fixed re-
source constraints,” Opt. Lett. 37, 19–21 (2012).

89. S. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M.
Pollefeys, “Interactive 3D architectural modeling from
unordered photo collections,” ACM Trans. Graph. 27, 1–10
(2008).

90. A. Gotchev, G. Akar, T. Capin, D. Strohmeier, and A. Boev,
“Three-dimensional media for mobile devices,” Proc. IEEE
99, 708–741 (2011).

91. B. Javidi, S. H. Hong, and O. Matoba, “Multidimensional op-
tical sensor and imaging system,” Appl. Opt. 45, 2986–2994
(2006).

560 APPLIED OPTICS / Vol. 52, No. 4 / 1 February 2013


