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ABSTRACT | Digital holographic microscopy is an ideal tool for 

3-D cell imaging and characterization. It provides a host of cell 

parameters based on cell morphology and its temporal dynam-

ics or time variation. These parameters can be used to study 

and quantify cell growth and cell physiology. When coupled with 

classification algorithms, this technique can also be used to iden-

tify and classify cells such as blood cells for automated disease 

identification. A compact, portable version of this 3-D optical 

imaging system has the potential to become a device for com-

pact field portable biological data collection, analysis, and cell 

identification leading to disease diagnosis with mobile devices, 

low cost instruments for deployment in remote areas with lim-

ited access to healthcare to combat disease. In this paper, we 

present an overview of our reported work on the development 

of digital holographic microscopes and their applications in 3-D 

cell imaging, cell parameter extraction and cell classification for 

potential automated disease identification.
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I .  IN TRODUCTION

Imaging, visualization, quantification and identification of 
cells and tissue is an interesting and challenging problem in all 
areas of life sciences. Cells are the basic and functional units of 
life in all living things, from microorganisms to humans. They 
host the biological machinery that makes the proteins, chemi-
cals and signals responsible for everything happening inside 
our bodies. Investigating these structural elements is essential 
in understanding their function. Measurements and analysis 
of the components of cells and their physiology are vital in the 
diagnosis of diseases such as cancer. In particular, study and 
diagnosis of diseases greatly benefit from the development of 
exotic imaging techniques that can provide information on 
cell characteristics without the need for labelling. Increasing 
demand for accurate early diagnosis and treatment of diseases 
are the major factors fuelling the growth of medical diagnos-
tics and medical therapeutics. Cellular imaging still remains 
one of the most sought-after techniques to achieve this.

Optical microscopes are one of the most widely used instru-
ments in cell imaging and cell studies [1], [2]. Conventional 
microscopes cannot provide the direct measurement of spa-
tial phase or optical path length (OPL) and index of refraction 
of cells, which makes it difficult to quantify cell parameters.
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Interference and digital holographic microscopy have the 
ability to provide direct measurement of the biophysical param-
eters such as optical path difference (OPD) and index of refrac-
tion based on the interference between the light beams pass-
ing through the specimen and a reference beam [1]–[3] from a 
single interference pattern [4] as well as temporal fluctuations 
of live cells. With digital holographic microscopes, quantita-
tive images of cells can be reconstructed, allowing researchers 
to generate detailed, label-free 3-D structures of cells. In the 
field of holography [5] and interferometry, advances in cost 
effective lasers, compact data acquisition equipment, as well 
as computing technologies, have led to the development of 
effective digital holographic microscopes leading to reliable, 
automated and low-cost tools for rapid sensing, imaging and 
identification of biological specimens, which can be used to 
detect and track various biological activities [6]–[60].

Digital holographic microscopes integrated with numer-
ical processing such as image processing, statistical pat-
tern recognition and machine learning algorithms allow 
researchers to investigate, detect and identify biological 
cells, processes, contexts or responses of various biological 
specimens in noninvasive, real-time conditions [8]–[12], 
[14]–[18], [35], [40], [41], [49]. Although it is difficult to 
extract quantitative phase information directly from a single 
in-line hologram, simplified digital holographic microscopes 
have been studied for identification and tracking of biologi-
cal specimens with large advantages in simplicity, compact-
ness and low cost [8]–[19]. The fusion of digital holography 
and information processing bears promise for a reliable and 
automated instrument, which can be efficiently used in the 
field of cell biology [8]–[18]. On the other hand, digital holo-
graphic quantitative phase microscopy (DH-QPM) with off-
axis configurations can efficiently extract information about 
the index of refraction and thickness of biological speci-
mens from a single hologram [20]–[60]. This can provide 
reliable quantitative phase mapping of the observed speci-
men with nanometer axial sensitivity. Therefore, DH-QPM 
enables researchers to obtain rich, noninvasive quantitative 
biophysical information about the structure of cells and 
microorganisms such as blood cells, cardiomyocyte, proto-
zoa, nerve cells, embryonic stem cells, cancer cells and even 
tissue [26], [30]–[32], [36]–[38], [40]–[60]. Also, DH-QPM 
can aid researchers in the analysis of cell dynamics (or 
temporal fluctuations), cell division, as well as biological 
 activities at different time scales ranging from a few milli-
seconds to several days [26], [31], [32], [35]–[38], [46], [47],  
[50]–[60]. Another advantage of DH-QPM is that images 
can be captured of both single cells and populations.

In this paper, we provide an overview of our work in the 
development of different classes of 3-D imaging instruments 
such as digital holographic systems for 3-D cell imaging and 
cell dynamics (temporal fluctuations) measurements, cell 
parameter extraction for automated cell classification and 
their potential applications to disease identification with 3-D 
optical imaging approaches. Fig. 1 illustrates an example of 

our approach for automated 3-D optical sensing and imag-
ing for identification of biological microorganisms such as 
blood cells using digital holographic microscopy for disease 
identification. The biophotonics sensor may be interfaced 
with a mobile device such as a laptop and connected to a 
remote database containing reference data for disease iden-
tification [10], [12], [14], [15]. The light source can be com-
pact and inexpensive such as an incoherent source [12] or a 
low-cost laser pointer or a partially coherent source such as 
band-pass filtered white light source. The optical sensor can 
be made to be compact and stable for a field portable low-
cost system for automated disease identification.

The paper is organized as follows. Section II explains 
the basic concept of the digital holographic microscopy.  
Sections III and IV explain on-axis digital holographic 
microscope and Gabor digital holographic microscope. In  
Section V we present off-axis digital holographic micros-
copy applied to cell imaging analysis, and identifica-
tion. The self-referencing digital holographic microscopy 
applied to cell identification is described in Section VI. 
Measurements of the temporal dynamics of the cells is 
presented in Sections V–VI. Finally, the conclusion is pre-
sented in Section VII. 

Fig. 1. Block diagram for 3-D sensing and identification of biological 
microorganisms such as blood cells using DHM interfaced with a mobile 
device such as a laptop and connected to a remote database containing 
reference data for disease identification [10], [12], [14], [15]. The light 
source can be compact and inexpensive such as an incoherent source 
or a laser diode [12].
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II .  DIGITA L HOLOGR A PHIC 
MICROSCOPY

Three-dimensional imaging of micro-objects can be 
achieved by employing interferometric methods. 
Quantitative phase microscopy techniques using inter-
ference principle provides high contrast images of cells, 
which are mostly transparent to visible light, along with 
the thickness information about the object [4]. Digital 
holography is an interference-based technique providing 
information on the 3-D features of an object. It works by 
optically recording holograms (interference patterns) on 
digital arrays and numerically reconstructing them in a 
computer by simulating the diffraction of light field from 
the recorded holograms to yield the complex amplitude 
information (phase and amplitude) of the wavefront [4], 
[61], [62]. From the reconstructed complex amplitude 
distribution spatial phase variation of the object can be 
extracted and used to estimate its thickness profile [4]. 
Another advantage of numerical reconstruction is that it 
can provide information at different object layers numeri-
cally (numerical focusing), without the need for mechani-
cal scanning [62]. The recording of the hologram is a 
single-shot process and the reconstruction provides the 
thickness information of the whole cell from a single holo-
gram. These features make digital holography an attractive 
tool for noninvasive, real-time 3-D imaging as well as iden-
tification of microorganisms.

A. Basics of Digital Holographic Microscope

As mentioned in the previous paragraph, digital hologra-
phy is an interferometric technique, meaning it involves the 
superposition of at least two wavefronts. In digital holographic 
microscopy, the magnified object beam (light beam modulated 
by the object) is made to superpose with a known background 
known as the reference beam (light beam not modulated by 
object) as shown in Fig. 2. Object and reference beam super-
pose at the pixilated digital array to form the holograms. If the 
complex amplitude distributions of the object and reference 
beam at the hologram plane are   U O   (x ,  y ) = O(x ,  y )   e   −iϕO(x, y)   
and   U R   (x ,  y )  = R(x ,  y )   e   −iϕR(x, y)   respectively (where  O  and  
R  are the scalar amplitude distributions and   ϕ  O    and   ϕ  R    are the 
phase distributions), intensity profile,  I(x ,  y ), of the hologram 
sampled by the digital sensor can be written as [61] 

  I T   =  I O   +  I R   + RO ∗  e   i ( ϕ  O  − ϕ  R  )   + R ∗ O  e   −i ( ϕ  O  − ϕ  R  )    (1)

where   I O    and   I R    are the intensity of the object and  reference 
beam respectively and ‘ ∗ ’ represents complex conjugation. 
Equation (1) tells us that the object phase information is 
encoded as the modulation of the interference pattern  
(hologram) [20]–[54].

A separate reference beam unmodulated by object 
information is not always necessary for the formation of 
the hologram. In the case of Gabor holography, the object 
is kept in the path of the light beam and the portion of 

the beam scattered from the object interferes with the  
portion of the beam which is not scattered [5], [7], [9], 
[10], [12]–[19]. In the case of self-referencing digital holo-
graphic microscopy (SRDHM), a portion of the object 
wavefront unmodulated by object information is made to 
interfere with the portion carrying object information to 
create the holograms [55]–[60].

B. Reconstruction of Digital Holograms

In holography, reconstruction of the image is 
obtained from the scattered reference beam shined on the  
microstructures of the hologram and in digital holography 
reconstruction is done numerically by shining the exact dig-
ital replica of the reference beam on the hologram [Fig. 3], 
which is equivalent to [62] 

  
 I T   R  e   −i ϕ  R    =

  
 ( I O   +  I R  ) R  e   −i ϕ  R    + R  e   −i ϕ  R    RO ∗  e   i ( ϕ  O  − ϕ  R  )  

     
 
  

+ R  e   −i ϕ  R    R ∗ O  e   −i ( ϕ  O  − ϕ  R  )   .
    (2)

In (2), the first term represents the undiffracted ref-
erence beam, second and third terms provide informa-
tion about the distorted real image and the virtual image, 
respectively.

The complex amplitude of the object at the image plane 
is obtained by simulating the propagation of the scattered 
reference beam from the structures of the hologram by 
numerical implementation of scalar diffraction integral [63] 
as shown in Fig. 3.

The numerical propagation process can be based on 
Fresnel–Kirchhoff diffraction integral or the angular spec-
trum approach towards the diffraction theory [63]. Both these 
integrals describe the propagation of the reconstructing wave 
from the hologram plane to the image plane. For propagation 
distances much larger than the size of the hologram, Fresnel-
Kirchoff integral with Fresnel approximation is the appro-
priate approach for numerical propagation. In the case of  
digital holographic microscopy, where the distance between 
the hologram and the image planes are very small, the angu-
lar spectrum approach will be useful as it describes the 
wavefront propagation over short distances. The hologram 

Fig. 2. Formation of hologram in digital holographic microscope.
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plane is usually at the image plane of the lens magnifying the 
object, making the numerical reconstructions faster.

C. Computation of Intensity and Phase

Numerical reconstruction of digital holograms provides 
the complex amplitude distribution   U O   ( x ,  y ) of the object  
wavefront at the image plane. From the complex amplitude 
the intensity and phase of the object at the image plane can be  
computed. The intensity of the object wavefront is given by [62] 

 I (x, y)  =   | U O   (x, y) |    2  .  (3)
Phase of the object wavefront is given by 

  ϕ  O   (x, y)  = arctan   
Im [ U O   (x, y) ] 

 __________ Re [ U O   (x, y) ]    .  (4)

In order to compensate for the aberrations due to optical 
elements two holograms are recorded for each object. One 
is recorded with the object in the field of view and is called 
the object hologram and the second one is recorded with the 
medium surrounding the object in the field and is called the 
background hologram. These holograms are reconstructed 
individually and the subtraction of the background holo-
gram phase from the object hologram provides the phase 
difference distribution  Δϕ(x ,  y ), nullifying the phase change 
introduced by the optical elements, which remained the 
same between the exposures. The phase difference is related 
to the object thickness  h(x ,  y ) through 

 Δϕ (x, y)  =   2π ___ 
λ
    ( n O   −  n B  )  h (x, y)   (5)

where  λ  is the vacuum wavelength of the source,   n O    and   
n B    are the constant average refractive indices of the object 
and the surrounding medium, respectively. If the refrac-
tive indices of the object and the surrounding medium are 
known, the thickness profile of the object can be computed 
otherwise the phase difference can be used to compute the 
optical thickness profile ( n × h ) of the object. Optical thick-
ness profile also carries enough information for object char-
acterization and identification.

III .  ON A X IS DIGITA L HOLOGR A PHIC 
MICROSCOPE

In this section, we overview single-exposure online (SEOL) 
digital holographic microscopy integrated with statistical 
sampling methods for automated 3-D imaging and recogni-
tion of biological specimens [8]–[12], [14]–[18] which was 
first proposed for cell identification [8]. For 3-D imaging of 
biological specimens, a coherent beam propagates through 
the specimen and its diffraction pattern by the microscope 
objective is interfered with by the reference beam on the 
image sensor. The image sensor interfaced with a computer 
optically records the interference pattern. In this configura-
tion, separate object and reference beams travel parallel to 
each other and interfere (see Fig. 4).

The interference pattern or SEOL digital hologram 
recorded at the image sensor plane or hologram plane is 
represented by (1). The first term in (1) can be dropped 
on the condition that the SEOL holograms for more dense 
specimens are recoded because   I O   <<  I R    and the second term 
can be assumed as a constant or easily removed by high-pass 
filtering. With the conjugate component of the SEOL digi-
tal hologram, it is demonstrated that crosstalk between real 
and conjugate terms are bound to low spatial frequencies  
in the SEOL digital holographic microscope [14]. Also, it is 
shown that the conjugate component in the single-exposure 
on-line digital holographic microscope can be neglected 
if many fringe patterns of the biological specimen are 
 captured by the CCD detector. Because of this condition, 
it can be assumed that the original focused image from the 
single-exposure on-line digital hologram is strongly domi-
nant, whereas the defocused twin image overlapping the 
focused image is much weaker. Therefore, the field distri-
bution of the original biological specimen from the single-
exposure on-line digital hologram pattern can be calculated 
numerically by the following inverse Fresnel transforma-
tion or angular spectrum method with two Fourier trans-
forms, which cancels the scale factor between the input and  
output [21], [22], [24], [64] 

Fig. 4. Experimental setup for recording the SEOL digital 
hologram of biological specimens. BS−beam-splitter,  
CL−collimating lens.

Fig. 3. Reconstruction of digital hologram.
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 O( x ′  , y ′  ) = IFrT { I(x, y ) } 

 = IFT  
(

  FT { I(x, y ) } × exp 
{

jπλ  d 0   
[

   u   2  _______ 
 (Δx  N x   )   2 

   +    v   2  _______ 
 (Δy  N y   )   2 

  
]
 
}

  
)

   (6)

  where  ( x ′  , y ′  )  are the object plane coordinates and   d 0    is 
reconstruction distance,  u  and  v  denote transverse discrete 
spatial frequencies,  (Δx, Δy )  is resolution at the hologram 
plane, and   N x    and   N y    are the whole hologram size in the  x ,  y   
direction, respectively. Therefore, many wavefronts at arbitrary 
depth along the z-axis, including the one representing the bio-
logical specimen in focus, are computed from a single SEOL 
digital hologram. As an additional merit, the single-exposure 
on-line digital holographic microscope allows one to obtain a 
dynamic time-varying scene digitally restored on the computer 
for monitoring and recognizing moving and growing micro/
nano biological organisms since it can be robust to external 
noise factors such as fluctuation and vibration. Moreover, 
object distributions need not be sparse in the single-exposure 
on-line digital holographic microscope because the reference-
to-object wave ratio can be controlled by the user [19].

I V.  GA BOR DIGITA L HOLOGR A PHIC 
MICROSCOPE

In single-exposure on-line DHM, the digital Fresnel holo-
grams from specimens are recorded in on-axis configura-
tions. The major advantage in on-axis configuration with 
no angular separation between the two interfering beams 
is that the user can control the reference-to-object beam 
ratio, which allows for optimal recording of the digital 
holograms of more dense objects [19]. If the specimens 
are relatively thin and transparent, however, the single-
exposure on-line digital holographic microscope can be 
much simpler to implement. This mode is referred to as 
the Gabor digital holographic microscope, and it allows 
for the use of inexpensive partially coherent light sources 
or band-pass filtered white light illuminations instead of a 
fully coherent source such as gas lasers owing to the fact 
that the unscattered beams or photons passing through the 
specimen and its surrounding medium provide the neces-
sary reference beam for recording of hologram patterns [5], 
[10], [12]–[15]. In Gabor DHM, the two arms of on-axis or 
off-axis configurations can be collapsed into one path (see 
Fig. 5). After recording the Gabor holograms of specimens, 
Fresnel transformation or angular spectrum approaches 
defined in (2) can be used for computational reconstruc-
tion of specimens. Involvement of informational process-
ing algorithms such as statistical pattern recognition, 
computer vision and machine learning algorithms can be 
further extended for recognition and classification of bio-
logical micro/nano-organisms, as well as for tracking them 
in 3-D space with the reconstructed holographic images of 
the specimens [8].

V. OFF-A X IS DIGITA L HOLOGR A PHIC 
MICROSCOPY A PPLIED TO CELL 
IM AGING A ND IDEN TIFIC ATION

Digital holographic microscopes work on the principle of 
superposition of object beam with a reference beam. In 
Gabor holography, the reference beam was the nonscattered 
portion of the wavefront illuminating the object. As can be 
seen from (2), in this geometry the virtual and real images 
are not spatially separated and it becomes difficult to extract 
the correct object phase distribution. In the single-exposure 
on-line digital holographic microscope since the refer-
ence beam is in line with the object beam, phase shifting 
is required to obtain phase information. To overcome these 
hurdles a separate reference beam is introduced at an angle 
with the object beam to create off-axis geometry (like the 
one shown in Fig. 1) [20]–[53]. This leads to spatial separa-
tion of the three terms in (2) at the image plane, eliminating 
the twin image problem and making it possible to extract 
the object phase information from a single hologram.

In this section, we present an overview of the auto-
mated quantitative analysis of red blood cells (RBCs) 
and cardiomyocytes (cardio cells) to demonstrate that 
the imaging informatics coupled to digital holographic  
microscope has very high potential in the area of cell  
biology [38], [40], [41], [45], [47]–[49].

One of the most commonly employed digital holographic 
microscope geometries for investigating biological objects 
in the transmission mode uses the Mach–Zehnder interfer-
ometer configuration as shown in Fig. 6, to create off-axis 
DH-QPM [20]–[43], [45]–[49], [51], [53]. One of the beams 
from a laser source split into two by a beam splitter transil-
luminates the object and acts as the object beam. It is made 
to interfere with the second beam (reference) at an angle 
resulting in the creation of off-axis holograms. Usually laser 
sources working in the red region of visible spectrum (632.8 
in the case of He–Ne lasers and 635 nm in the case of laser 
diode module) are preferred. They are easily available and 

Fig. 5. Experimental setup for recording the Gabor digital hologram 
of biological specimens. A portion of the wavefront not scattered 
by the object (reference wavefront) interferes with portion of the 
wavefront scattered by the object (object wavefront), resulting 
in the formation of holograms. Here short coherent sources also 
produce good contrast interference fringes, since the path length 
difference between the beams is due to the object alone.

C
C

D
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are absorbed less by living cells, compared to shorter wave-
lengths [65]. Low temporal coherent sources can also be used 
as the light source, but it requires special optical elements for 
matching of the path lengths so as to achieve high contrast 
interference fringes [39], [50], [51]. The field of view is also 
limited by the spatial coherence of the source [50].

A. Automated RBC Analysis

Blood consists of different types of cells but RBCs or 
erythrocytes are the most abundant ones. The RBC’s shape is 
optimum for maximal deformation, the maximum surface at a 
given volume, rapid changes and survival of the cell during its 
many repeated passages through the narrow channels. These 
conditions are satisfied by a biconcave disk shape, which is 
considered the norm for the RBCs (Fig. 7). The RBC has a 

flexible membrane with a high surface-area-to-volume ratio 
(SVR) that facilitates large reversible elastic deformation of 
the RBC as it repeatedly passes through small capillaries dur-
ing microcirculation. The RBC membrane, vital to the shape 
and function of RBC, consists of a lipid bilayer and an inter-
nal cytoskeleton supporting the lipid bilayer. Hemoglobin is 
the most important component of red blood cells and consti-
tutes about 33% of the cytoplasm. It has been discovered that 
the loss of membrane function is most likely related to some 
abnormality in the maintenance of the cytoskeleton of RBC 
and shape changes of the membrane [66], [67].

Fig. 8(a) shows the hologram of a healthy human red blood 
cell recorded with off-axis digital holographic microscope. 
A background hologram, with the surrounding medium 
(blood plasma) present in the field of view is also recorded 
for phase compensations [Fig. 8(b)]. These holograms are 
reconstructed using numerical implementation of angular 
spectrum propagation integral [63], to retrieve the complex 
amplitude information at the image plane. Fig. 8(c) shows 
the reconstructed intensity at the image plane after numeri-
cal focusing. The intensity profile provides only limited infor-
mation about the object and has low contrast as most of the 
beam is transmitted through the cell. The retrieved quantita-
tive phase contrast profile of the cell is shown in Fig. 8(d), 
which has higher contrast and higher information content 
compared to the intensity profile. The phase profile is used to 
compute the thickness profile of the cell using (5), using con-
stant average refractive index values of 1.42 for the red blood 
cell and 1.34 for the plasma [68] and is shown in Fig. 8(e). 
The cross sectional thickness profile of the cell is shown in 
Fig. 8(f). The bi-concave shape of the RBC can be seen from 
these figures. Fig. 8(d)–(f) shows the potential of the tech-
nique for high contrast quantitative phase imaging of cells. 
The cell morphology obtained from quantitative phase images 
(QPIs) is used for cell visualization as well to extract the phys-
ical, optical and mechanical parameters of the cells, which in 
turn is used for cell classification [14], [25], [32].

In the case of RBC, it is shown that 3-D morphological 
parameters related to its shape profile including mean cor-
puscular hemoglobin (MCH) and MCH surface density 
(MCHSD) of normal RBCs can be obtained by the off-axis 
digital holographic microscope to identify various types of 
RBCs. By monitoring MCH, for example, any modifications 
or conservation of the hemoglobin content in RBCs can be 
investigated since the phase of an optical beam is directly 
related to the MCH [69]. The ability of DH-QPM in study-
ing RBC parameter is not limited only to MCH and MCHSD. 
Projected area (PA), average phase value within the RBC 
area and sphericity coefficient can also be calculated from 
QPIs provided by the DH-QPM technique. The normal RBC 
can undergo various shape transitions. The most common 
types are biconcave, stomatocyte, and echinocyte RBCs. 
Theoretical considerations can provide explanations about 
the echinocyte shape transitions of RBCs [70]. However, their 
mechanical changes in blood diseases have not been studied Fig. 7. Structure of human red blood cell.

Fig. 6. Off-axis digital holographic microscope employing 
MachÐZehnder interferometer geometry. BS−beam splitter, 
M−mirror, S−sample, MO−microscope objective lens, BC−beam 
combiner, D−digital array. Inset shows that the object and reference 
beam interfering at an angle.
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quantitatively and statically. We experimentally show that 
joint statistical distributions of the characteristic parameters 
of RBCs obtained from QPIs can be used as feature patterns.

B. Automated Quantitative RBC Analysis at  Single-
Cell Level

To isolate single RBCs, maker-controlled watershed seg-
mentation algorithm is applied to the images [42]. A simple 
thresholding with the background phase information can 
also be used for this [38]. For investigating the characteristic 
properties such as 3-D morphology and MCH of RBCs, PA 
and mean of phase values of single RBCs are automatically 
measured. PA and mean of phase values are computed from 
the following equations, respectively [41], [43]:

 S = N   
 p   2 

 ___ 
 M   2 

   ,  ϕ  ̅   =   1 __ N     ∑ 
i=1

  
N

   ϕ  i     (7)

  where  N  denotes the total number of pixels within the  
single RBC,  p  denotes the pixel size,  M  is the lateral mag-
nification of the microscope and   ϕ  i    is the phase value at the   
i   th   pixel within the single RBC with the phase value of the 

background set to zero. In this study pixel size is  0 . 159 μm .  
The sphericity coefficient of  k  can be obtained by dividing 
the thickness at the center of the RBC by the thickness at 
a quarter of its diameter. The sphericity coefficient  k  as a  
morphological measurement is defined as follows [41]:

 k = p  h  c   / p  h  d     (8) 

where phc and phd are phase values at the center of the 
RBC and at a quarter of its diameter, respectively. A value 
close to unity indicates that the RBC has a shape close to a 
sphere (echinocyte). In contrast, a value smaller than unity 
tells that the shape is closer to that of a doughnut. Another 
important property is the dry mass or MCH value and it is 
the mass of the RBC when it is completely dried. The fol-
lowing equation provides the MCH of the RBC [41]:

 MCH =   10λ ____ 2πα    ∫ S   ϕds  =   10λ ____ 2πα     ϕ ̅  S  (9)

where  λ  is the wavelength of the light source,  ϕ  is the phase 
value of each pixel within a RBC,  α  is the refraction incre-
ment (in   m   3  /kg or dl/g) related to the protein concentra-
tion. MCH is an important parameter which can be used 
to investigate any distinctions, alterations or conservation 
of the hemoglobin content in RBCs. The MCHSD for the 
measurement of the MCH concentration can be calculated 
from dividing the MCH by the PA as [41]

 MCHSD = MCH / PA.  (10)

Fig. 9 shows the phase images of two RBC samples 
recorded using two-beam off-axis DH-QPM. In Fig. 9(a) 
stomatocyte RBCs are predominant while in Fig. 9(b) disco-
cyte RBCs are predominant. These two samples are used for 
the automated quantification of 3-D morphology, MCH, and 
MCHSD of RBCs.

We take advantage of using the maker-controlled 
watershed segmentation algorithm not only by the seg-
menting the image but also by labelling each single RBC. 
Having counted pixels, then, PA of each RBC can be cal-
culated by (7). Since the inner region of RBC has a differ-
ent shape depending upon the type of RBC, the inner and 
outer part of RBC can be examined separately (see Fig. 10).  

Fig. 8. Quantitative phase imaging using two-beam off-axis 
DHM. (a) Recorded hologram of a human red blood cell using a 
microscope objective lens (MO) of 40X magnification and NA of 
0.65. A random linearly polarized laser source working at 632.8 nm 
was used along with an 8-bit CCD camera with  4 . 65-μm  pixel pitch 
to record the holograms. (b) Hologram of the background (blood 
plasma). (c) Intensity profile of the blood cell at the image plane 
obtained by numerical focusing. (d) Quantitative phase image of the 
red blood cell. (e) Thickness profile of the RBC computed using the 
phase distribution. (f) Cross-sectional thickness profile of the RBC.

Fig. 9. Reconstructed phase images of RBC. (a) RBCs with 
predominantly stomatocyte shape. (b) RBCs with predominantly 
discocyte shape [41].
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Part B, which is located on the interior of the part A, is the 
region of lower phase than part A, resulting from the bicon-
cave shape of RBCs.

Fig. 11 shows the statistical distributions of PA (X1), 
and the mean of the phase value (X2) in the A part of RBC  
(see Fig. 10). The mean and standard deviation of RBCs with a 
stomatocyte shape for X1 are  34 μ m   2   and  5 μ m   2  , respectively, 
and are 97° and 9° for X2, respectively. In contrast, for a discocyte 
RBC, the mean and standard deviation of variable X1 are  42 μ 
m   2   and  8 μ m   2  , respectively, and are 74° and 15° for variable X2, 
respectively. It is worth mentioning that the stomatocyte RBCs 
tend to be more similar to each other than discocyte RBCs since 
stomatocytes are inclined to be much closer to the mean value. 
In the case of the mean of the phase value in the A part, stomat-
ocyte RBCs are larger than the discocyte RBCs while the mean 
PA in the A part of stomatocyte RBCs is smaller than disco-
cyte RBCs. It should be mentioned that there is a 23° difference 
between the average phase values in the A part of the RBCs with 
the different types of shapes. Regarding the average PA value 
in the A part of different RBC, a difference of approximately  
 8 μ m   2   has been observed. Also, the overlapped area between 
two statistical distributions states that average phase value has 
stronger ability to discriminate two categories of RBCs than 
PSA variable.

Experiments also revealed that PA for the inner part (B) 
is  10 μ m   2  ± 5 μ m   2   (mean  ±  std), and the mean phase value 
(MPV) is 81°  ±  12° in RBCs with the stomatocyte shape. In 
contrast, PA in discocytes in the part B is  18 μ m   2  ± 5 μ m   2  ,  
and those for MPV are 60° ± 11°, respectively. The PA in 
the B part of the stomatocyte RBCs is about  8 μ m   2   smaller 
than the corresponding value in the discocyte type while the 
standard deviation is very similar. Fig. 12 shows the scatter 
plot of stomatocyte and discocyte RBCs according to the two 
variables of PA and mean phase value in A and B parts, where 
many single RBCs from the phase images of RBCs having the 
different shapes were investigated. As shown in Fig. 12, the 
projected area of the A or B parts is inversely proportional to 
the mean phase value in the A or B parts of both types of sin-
gle RBCs. Furthermore, there is a strong correlation between 
projected area and mean phase value in the A or B parts of 
both types of single RBCs.

MCH value for stomatocyte RBCs is 31.1  ±  4.0 pg, while 
MCH for discocyte type is 28.9 ± 4.0 pg. These averaged 
MCH values for both types of RBCs are approximately in the  

typical range of [27],  [31] picogram/cell. Fig. 13(a) shows the 
statistical distributions of the MCH in the A part of a single 
RBC where we have computed the MCH of RBCs with the  
different types of shapes [71]. Note that the MCH of RBCs 
with a stomatocyte shape is a little larger than RBCs with a 
discocyte shape. Fig. 13(b) shows the scatter plot of the two 
categories of RBCs by two variables of MCH and MCHSD. 
Sphericity  coefficient as previously mentioned can explain 
the similarity of an RBC to a spherocyte RBC. The sphericity 
coefficient in RBCs with a stomatocyte shape is calculated to  
be 0.54  ±   0.21, while this value RBCs with a discocyte shape 
is 0.63  ±  0.18.

C. Cell Morphology-Based Classification of RBCs 
Using Holographic Imaging Informatics

A robust classification strategy is essential to analyze 
RBCs for medical diagnosis and therapeutics. In addi-
tion, an RBC classification algorithm would be helpful in 
screening RBC-related drugs or agents. We believe that 
using conventional 2-D imaging systems for quantitative 
analysis of RBCs is limited because they cannot provide 
important biophysical cell parameters related to the 
structure and shape of RBCs. Therefore, development of 
an RBC classification method based on quantitative holo-
graphic imaging with greater efficiency and accuracy 

Fig. 10. Different parts in the red blood cells [49].

Fig. 11. (a) Two statistical distributions for the projected area (PA) 
of RBCs. (b) Two statistical distributions of the mean of phase value 
in the RBC area. The solid line is for the RBCs with a stomatocyte 
shape. Dotted line is for the RBCs with a discocyte shape [41].
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is imperative. In this section, we overview automated 
methods to classify RBCs by analyzing the equality of 
the covariance matrices in features-extracted RBC holo-
graphic images [49]. Our simulation results demonstrate 
that the morphological or geometrical features of RBC 
can be useful in RBC classification.

At first, the Gabor wavelet filter is applied at the  
single-RBC level [72]. This filter is the optimal compro-
mise between spatial resolution and frequency resolu-
tion. Also, it has good noise tolerance according to its 
band-limited property and the representation of the local 
features centered on feature points by its coefficients. 
The continuous wavelet transformation of the extracted 
RBCs is then defined as [10]

  R ̂   ( m   ′ ,  n   ′ )  = R (m, n)  ⊗ ψ (m, n)   (11)

where R(m, n) is the RBC image after segmentation,  
  R ̂  (  m   ′  ,   n   ′  ) is the Gabor-wavelet-filtered RBC image, and  ⊗  
denotes convolution. The Gabor wavelet filter is widely 
used to extract features that differentiate between tar-
gets with similar shapes for object classification. It is also 
shown that texture features extracted from Gabor filter 
outperform these from other methods [73]. Accordingly, 
the Gabor filter is utilized to extract the RBC features 
for the classification purposes. After applying the Gabor 

wavelet filter to the extracted RBCs, the features in  
Table 1 are measured. Features F1–F10 are identified 
from the whole RBC and F11–F14 are related to the  
inner part of the RBC on the Gabor-wavelet-filtered  
single RBC image.

According to Table 1, 14 features are extracted for 
each class of RBC. However, any dependent, redundant or  
irrelevant features should be excluded for the better classifi-
cation results since they can degrade or confuse the classifi-
cation model. Therefore, the stepwise selection of variables, 
a combination of the forward and backward selection meth-
ods [75] and commonly referred to as stepwise discriminant 
analysis, is utilized to analyze the extracted features. For the 
forward selection procedure, the Wilks  Λ  or  F  test is utilized 
to test the null hypothesis that a particular variable does 
not contribute to classifying the groups beyond what other 
existing variables yield. In this procedure, first, the Wilks  
Λ(  y i   )  value for each individual variable is computed, where  
 i = 1, 2, …, p  and  p  is the number of variables [75]. Then, 
the minimum  Λ(  y i   )  value or the maximum associated  F  value 
is chosen. For example, if   y 1    is chosen in the first step, then  
 Λ(  y i   |  y 1   )  for each of the other  p − 1  variables is computed 
and that with the minimum  Λ(  y i   |  y 1   )  or the maximum associ-
ated partial  F  is selected. Then we assume that   y 2    is selected 

Fig. 12. Scatter plot of the relationship between the projected area 
and the mean of the phase value for (a) A part and (b) B part (see 
Fig. 10) in the single RBC [41].

Fig. 13. (a) Statistical distributions of random variable recording 
the MCH based on each single RBC. (b) Scatter plot of the 
relationship between the MCH and MCHSD for a single RBC [41].
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in the second step. This procedure continues until no more 
variables can be chosen. Thus,  Λ(  y i   |  y 1   ) ,  Λ(  y i   |  y 1   ,   y 2   ), …, 
 Λ(  y i   |  y 1   ,   y 2   , …,  y p–1

   ) are computed using [73]

 Λ (x | y 1   ,  .  .  . ,  y p   )  =   
Λ ( y 1   ,  .  .  . ,  y p   , x) 

  ____________ 
Λ ( y 1   ,  .  .  . ,  y p  )      (12)

which is distributed as     Λ1, v H  ,vE−p
    with the degrees of freedom 

of   v H   = k − 1  and   v E   = k(n − 1 ) , where  k  is the number of 
groups and  n  is the number of samples. Regarding (12), if 
adding the additional variable  x  makes  Λ(  y 1   , …,  y p   ,  x ) smaller 
than  Λ(  y 1   , …,  y p   ) , then  Λ(x|  y 1   , …,  y p   )  is small enough such 
that the null hypothesis that the variable  x  is not useful in clas-
sifying the groups beyond which other variables would yield 
is rejected. Moreover, (12) can be described as follows [74]:

 Λ =  |E| / |E + H|   (13)

where 

  
E =   ∑ 

i=1
  

k
    ∑ 

j=1
  

n
   ( y ij   −   _ y  i  )      ( y ij   −   _ y  i  )    T  

    
H = n   ∑ 

i=1
  

k
   (  _ y  i   −  _ y )     (  _ y  i   −  

_
 y )    T  

   
 (14)

where   y ij    is the  j th data point of the  i th group,   _ y  i is the mean 
vector of the  i th group, and   _ y   is the mean of all the sample 
data. The  Λ  statistics of (12) can also be changed into the fol-
lowing partial  F  statistic [75]:

 F =   1 − Λ ____ 
Λ

     
 v E   − p

 ____  v H      (15)

which is distributed as   F  v H  , v E  −p
   , where   v H    = k − 1  and   

v E   = k(n − 1 ) . If  Λ    in (12) or  F  in (15) is smaller than the 
critical values    Λ α,1, v H  , v E  −p

    or   F α, v H  , v E  −p
   , the null hypothesis is 

rejected ( α  is the significance level).
Similar to the forward selection operation, the backward 

selection begins with all the features. Then, the feature that 
contributes the least is excluded from the set. Two classifiers 
have been implemented and choosing the classifier depends 
on the test of equality between covariance matrices. If covari-
ance matrices are not equal then a nonlinear classifier will 
be considered. Otherwise, a linear-classifier will be chosen. 
Eventually, the basic scheme for the RBCs classification 
method based on cell morphology is presented in Fig. 14.

Here 117 samples for stomatocyte RBC, 105 samples for 
discocyte RBCs and 100 samples for echinocyte RBCs are 
extracted. The training and test sets are examined and clas-
sified by an expert biologist before any further experiments. 
It is worth mentioning that stomatocyte and discocyte 
RBCs have a central part in contrast to echinocyte RBCs. 
The Gabor wavelet filter was applied to each RBC before 
the features extraction. Fig. 15 shows some of the Gabor-
wavelet-filtered RBC images resulting from averaging all of 
the Gabor coefficients obtained by varying the Gabor kernel 
frequency from 0.1 to 0.4 at intervals of 0.1 and changing 
the rotation angle of the Gabor kernel from 0° to 180° at  
30° gaps for each kernel frequency [49].

At the next step, F1–F10 and F11–F14 were measured, the 
former at the entire RBC and the latter from the inner part 
of the RBC on the Gabor-wavelet-filtered RBC image. Four 
random values are generated from a standard normal distri-
bution to be assigned to F11–F14 in which case the inner part 
of RBC was not detected. The importance of each feature was 
analyzed by applying the stepwise selection method described 
previously. Therefore, those features not helpful in distin-
guishing the three RBC groups have been excluded from the 
feature set. Other features will be kept untouched. Eventually,  
the null hypothesis revealed that ten features of F1, F2, F4, 

Fig. 14. Basic scheme for cell morphology-based classification of 
red blood cells [49].

Table 1 Feature Descriptions [49]
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F5, F7, F9, and F11–F14 were not redundant and were kept 
for designing the RBC classifier. The null hypothesis for this 
test was that the variable was redundant for separating the 
RBC groups.

The ten useful features after the stepwise selection step 
were used to establish the RBC classifier. The   χ   2   test for the 
equality of the covariance matrices using the ten features 
was conducted with the null hypothesis that the covariance 
matrices for the three kinds of RBCs are the same, where   
χ   2  = 4035  and the critical value was 162 at significance 
level  α = 0 . 05 . The equivalent  p -value for the null hypoth-
esis was approximately 0 at  α = 0 . 05  (the null hypothesis 
can be rejected). This lead to the adoption of the following 
three nonlinear discriminant functions which correspond to 
the three types of RBC [49]:

 Stomatocyte RBC :   L 1   (y)  =   (y −   
_
 y  1  )    T   S  1  

−1  (y −   
_
 y  1  )   

Discocyte RBC :   L 2   (y)  =   (y −   
_
 y  2  )    T   S  2  −1  (y −   

_
 y  2  ) 

Echinocyte RBC :   L 3   (y)  =   (y −   
_
 y  3  )    T   S  3  −1  (y −   

_
 y  3  )    (16) 

where S1, S2, and S3 are the covariance matrices and,    
_
 y  1   ,    

_
 y  2    

and    
_
 y  3    are the mean vectors of the three types of RBC, and y 

is feature vector of the unknown input RBC. Finally, a cross-
validation [75] is performed to estimate the error rates of the 
presented RBC classification method based on individual 
RBC level.

Fig. 16 shows a scatter plot of the selected features. 
According to Fig. 16(a) and (d), we can see that there is a 
positive correlation between two corresponding features. 
Table 2 presents the classification result and the rate of mis-
classification for the three types of RBC based on testing set. 
These experimental results show that the misclassification 
rates of our RBC classification scheme are 0 except disco-
cyte ones. Moreover, all the samples in training RBC set are 
correctly classified and the misclassification rates are 0 for 
the three types of RBC.

Overfitting problems are generated if we train a machine 
learning algorithm with dataset and use the same dataset for 
predictions to evaluate the proposed algorithm because the 
algorithm would remember every training sample  during 
the training process and make a good prediction on the 

training dataset. On the other hand, the algorithm may pro-
duce poor predictions on a nontraining dataset. Therefore, 
the best way to evaluate the performance of a classification 
algorithm is to make predictions for new data for which we 
already know the correct answers. In other words, the train-
ing and testing set should not be overlapped. Some popular 
techniques used to estimate the performance of classifica-
tion algorithm consist of k-fold cross validation, repeated 
random test-train splits, and leave-one-out cross valida-
tion [76]. We have adopted the leave-one-out cross valida-
tion method to evaluate the RBC classification algorithm 
because more observation data (that is, the total observation 
data minus one) can be used as a training set and all obser-
vations can be used as a testing set that would be circularly 
predicted in this approach. For the experiments presented, 
the misclassification rates of our proposed classification 
algorithm for the three types of RBC (stomatocyte, disco-
cyte, and echinocyte RBC) are 0, 0.95%, and 0, respectively. 
Moreover, the area under receiver operating characteristic 
(ROC) curve [76] which is another important classification 
metrics is used to evaluate our classification algorithm. The 
average area under the curve (AUC) [76] for the proposed 

Fig. 15. Gabor-wavelet-filtered RBC images. Top row: extracted 
RBCs with the marker-controlled watershed transform algorithm. 
Bottom row: corresponding Gabor-wavelet-filtered RBCs [49].

Fig. 16. Scatterplots between selected pairs of features (see Table 
1) for the three types of RBCs: (a) scatterplot between features F1 
and F2; (b) scatterplot between features F5 and F11; (c) scatterplot 
between features F5 and F13; and (d) scatterplot between features 
F11 and F12 [49].

Table 2 Results of the Classification of the Three Types of RBCs Using 

the Presented Classifier [49]



Anand et al . : Automated Disease Identif ication With 3-D Optical Imaging: Medical Diagnostic Tool

Vol. 105, No. 5, May 2017 |  Proceedings of the IEEE 935

RBC classification scheme was measured to be 0.9984. The 
low misclassification rates and high average area under the 
curve reveal the robustness of our proposed classification 
algorithm. In the experiments, our method focuses on the 
classification of three main types of RBCs while there are 
various types of RBCs. Therefore, our system may produce a 
wrong prediction for an RBC that does not belong to one of 
these three types. However, the system can be improved by 
developing a classification algorithm by introducing more 
types of RBC in the training dataset in the future.

D. Label Free Identification of Healthy and Malaria 
Infected Red Blood Cells

Malaria is one of the potentially life threatening 
blood related diseases found especially in Africa and 
Asia. Medication and cure of malaria requires its correct 
and early diagnosis. Malaria is diagnosed by identifying 
the parasite itself in the red blood cells or by identifying 
the response of the blood cells to its presence. Samples 
are stained with chemicals which get attached to malaria 
parasites, changing the absorption profile of the cell. 
Investigation of stained blood smears under a bright field 
microscope by a trained health care professional is the best 
method to identify malaria [77]. But especially in devel-
oping countries, due to lack of sufficiently trained tech-
nicians, good quality instruments and chemicals, visual 
identification of malaria infected RBCs becomes difficult 
and unreliable. Also, study of how the parasite affects 
and changes the red blood cells and its physiology will be 
useful in early malaria diagnosis and to design drugs for 
its treatment. Quantitative phase microscopy, including 
digital holographic microscopy, can provide a multitude 
of blood cell parameters based on the quantitative phase  
images [31], [51], [53], which could be used to study the 
effect of the malaria parasite on the red blood cells as well 
as to discriminate healthy and malaria infected samples 
without the need of any labeling agents [40], [48]. In this 
section the use of DH-QPM in cell parameter extraction, 
study of cell physiology and cell identification for blood 
samples affected by malaria is overviewed.

Thin blood smears of centrifuged healthy and severe 
malaria blood samples were made on a microscope slide 
for observation under the digital holographic micro-
scope. The microscope employed a  100 ×  oil immersion 
microscope objective lens with NA    = 1.25  used in dry 
mode along with a He–Ne laser working at 611 nm and an 
8-bit CCD array with  4.65-μm  pixel pitch. Reconstructed 
quantitative phase distributions for representative cells 
from healthy and malaria infected samples are shown in 
Fig. 17.

A total of 52 cells from a healthy sample and 45 cells 
from malaria tested positive (Giemsa test) were used in the 
study. The locations of the cells were determined automati-
cally by thresholding the obtained phase distributions by the 

background phase distribution [38]. From the phase maps it 
can be seen that the predominantly biconcave disk shape in 
the case of healthy cells has changed to a much more spheri-
cal shape in the case of the malarial sample.

Many important cell parameters can be extracted from 
the phase profile of the cells. OPL represents the product 
of the cell’s index of refraction and thickness is computed 
from the phase profile using (5). The mean OPL is a measure 
of many cell parameters including cell dry mass and hemo-
globin content. It can be written as 

 OP  L mean   =   1 __ N     ∑ 
i=1

  
N

  OP  L i.     (17)

OPLi is the OPL at   i   th   pixel of the optical  thickness map 
and  N  is the total number of pixels occupied by the cell on 
a flat surface. Optical volume represents the effect of the 
contents of the cell and the thickness of the cell on the light 
beam passing through it. It is proportional to the optical 
thickness through 

  V optical   = dA   ∑ 
i=1

  
N

  OP  L i     (18)

where dA is the area each pixel represents at the image  
plane and is given by  dA = Δ  x   2  /  M   2   ( Δx  is the camera pixel 
size and  M  is the lateral magnification of the system). One of 
the important parameters in the case of red blood cells is the 
surface area to volume ratio. The biconcave disk shape of the 
red blood cells is of particular importance as it increases this 
ratio, thereby increasing the chances of oxygen permeating 
the membrane of the cell. The optical surface area (OSA) is 
given by [78] 

 OSA = dA   ∑ 
i=1

  
X

    ∑ 
k=1

  
Y
   √ 

__________________

   (1 + δ  h  x  2  (i, k)  + δ  h  y  
2  (i, k) )      + PA  (19)

 δ  h x    and  δ  h y    are the gradients along the  x  and  y  direc-
tions of the cell thickness profile and  i  and  k  is the posi-
tion of the pixel in the region where the cell existed. Other 
parameters that can be extracted using the OPL profile 
include: coefficient of variation of the optical thickness 
indicating the thickness distribution around the mean 

Fig. 17. Quantitative phase profiles at the image plane fore, healthy 
cells (top row) and malaria infected cells (bottom row) [38].
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value and the flatness of the cell, diameter of the cell, 
sphericity index of the cell indicating its roundness, and 
statistical parameters of OPL distribution such as its skew-
ness and kurtosis which together provide the flatness and 
symmetry of the cell [78]. Table 3 gives the values of the 
parameters for healthy and malaria samples. Not all these 
parameters provide an insight into the state of health of  
the cell. Fig. 18 shows the scatter plot of measured mean 
OPL and optical surface to volume ratio. These parameters 
are of importance because they provide information about 
the shape and flatness of the cells.

The mean of the OPL distribution for cells infected 
by the malaria parasite is higher. This is expected since 
the presence of the parasite increases the OPL of light 
propagating through the cells. The surface to volume 
ratio is less in the case of a malaria sample. Together 
these two parameters indicate that the malaria infected 
cells have different spatially varying optical paths (shape) 
compared to healthy cells. So the shape of the cell may 
be used to discriminate between the cells. The Pearson 
product-moment correlation coefficient between shapes 
of healthy and malaria infected red blood cells were used 
for this [40]. The thickness distribution obtained at dif-
ferent axial depths of the object by numerical focusing 

(Fig. 19) was used to compute the shape correlation coef-
ficient. Fig. 20 shows the probability distribution of the 
measured correlation values along with the scatter plot of 
the values for individual cells.

Mean values of shape correlation coefficients for healthy 
and malaria infected cells are shown by solid blue lines. 
Average of these means (solid black line) acted as the dis-
crimination threshold. Using this threshold the true positive 
rate of identification comes out to be better than 95% and 
the false positive rate is about 3%.

A digital holographic microscope has the potential to 
study the bio-physical properties of the cell using the shape-
based parameters. These parameters can be used to visualize 
the physiology of the cells and can also be used as a base for 
cell discrimination.

E. Automated Quantitative Analysis of 
Cardiomyocytes

Cardiomyocytes cells or myocardiocytes are the main 
contractile elements of the heart muscle. These cells work 
entirely to generate human heart beating and control blood 
flow through the blood vessels and capillaries of the circula-
tory system. Cardiomyocytes make up the atria, and the ven-
tricles; the former are the chambers in which blood enters 
the heart and the latter are the chambers where blood is 
collected and pumped out of the heart. These cells must be 
able to shorten and lengthen their fibers and the fibers must  

Fig. 18. Measured cell parameters based on its spatially varying 
OPL profile (shape) of the cell. (a) Mean OPL. (b) OSA-to-volume 
ratio. Mean values of the parameters are shown as continuous lines.

Fig. 19. Cell identification by shape comparison.

Fig. 20. Label free identification of malaria infected red blood 
cells. (a) Probability distribution of shape correlation values. 
(b) Computed correlation coefficient between different cell 
combinations. The average of shape correlation coefficient for 
healthy-healthy ( 0 ) and healthy-malaria ( 0 ) combinations (straight 
black line) acts discrimination parameter.

Table 3 Red Blood CellsÐPhysical Parameters
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be flexible enough to stretch. These functions are critical to 
the proper form during the beating of the heart [37].

During the lengthy drug discovery process, it is crucial 
to detect toxic compounds early, through safety profiling 
assays in the process before significant time and important 
financial investments are made. Therefore, researchers 
and companies in the fields of medicine have to ensure 
that the effect of lead candidate compounds on cardiac 
function strictly satisfy safety criteria. Consequently, it 
is important to establish more informative in vitro car-
diotoxicity screens and data analysis algorithms at the 
early stages of drug development for preventing late stage  
failure [79], [80].

We will show that by taking advantage of the DH-QPM 
technique integrated with information processing algo-
rithms it is possible to measure dynamic properties 
of beating cardiomyocytes in an automated manner. 
Experimental results revealed that beating parameters of 
cardiomyocytes can be obtained by the automated algo-
rithm based on digital holographic quantitative phase 
microscopy phase signal analysis. Our method is fast, 
contactless and effective enough to allow for automated 
analysis between normal cardiomyocyte dynamics and all 
other abnormal activities. The proposed procedure can 
enable screening cardio-toxicological or profiling of can-
didate molecules in preclinical drug discovery and safety 
testing programs.

The 3-D reconstruction process can be achieved at 
a speed of 100 images per second depending on the PC 
computer power. The QPIs are based on OPD defined as 
follows [47]:

 OPD(x, y)  = d(x, y )  ×  [ n c   (x, y)  −  n m  ]   (20)

where  d (x, y) is the cell’s thickness,   n c   (x, y) is the average 
intracellular refractive index integrated along the optical 
axis at the (x, y) position and   n m    is the constant refractive 
index of the surrounding medium. The OPD is similar to 
OPL as defined in (5). For the quantitative analysis of car-
diomyocyte dynamics, we calculated the beating activity 
using two alternative methods, average and variance of OPD 
images. The contraction and relaxation feature of cardio-
myocyte were also measured using the proposed automated 
procedure.

F. Cardiomyocytes Beating Profile Measurement 
Using Averaged OPD Images

The beating profile of cardiomyocytes was computed 
from thresholding the cardiomyocyte OPD images with 
a threshold value of 10% of the maximum OPD signal 
and then the thresholded images were averaged. The 
threshold value is utilized to suppress the effect of noise. 
We realized that beating profile under different thresh-
old does not affect final beating profile significantly  

(data not shown). An example of the thresholded cardio-
myocyte images is presented in Fig. 21. The beating profile,  
after applying (20), is shown in Fig. 22 (inset is the  
magnified part on the beating pattern). Then, multiple 
parameters based on beating profile in Fig. 23 were derived. 
These parameters are described in Table 4.

To measure the desired characteristics properties of 
beating profile, peaks shall be detected. It is possible by 
applying the first derivative technique to the beating curve 
(Fig. 22) and finding locations where the first derivative val-
ues are zeros. It should be noted that the beating periods 
calculated between two negative peaks are approximately 
equal to that between two positive peaks. Consequently, 
the beating profile between two adjacent negative peaks 
considered as one beating period should be also extracted 
(see Fig. 23). There are some other beating properties which 

Fig. 21. An example of the thresholded cardiomyocyte image 
(red color denotes background after thresholding).

Fig. 22. Beating profile of cardiomyocyte (inset shows a single 
beat) [47].
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should be calculated from the fitted cure on the raw beat-
ing profile. Therefore, the extracted beating profile for each 
beating period is fitted with  9th -degree polynomials in the 
least square criterion. One of the fitting polynomial curves 
and the parameters are given in Fig. 23.

Regarding the fitted polynomials curves, the amplitude 
value defined in Table 4 can be calculated as the maximum 
value minus the minimum value on the fitted curve. Thus, 
the corresponding time (unit is second) in  x -axis for Amp10, 
Amp20, Amp50, Amp80 (see Fig. 23) can be also calculated 
by solving the fitted polynomial equation. Then, all of the 
mentioned parameters for each individual beating period 
can be calculated.

G. Cardiomyocytes Beating Profile Measurement 
Using Variance of OPD

We also propose an alternative way, less sensitive to 
noise, to calculate the beating profile of cardiomyocytes to 
measure the variance of each OPD image after the temporal 
mean of the image stack is subtracted. This method is illus-
trated by (15) [47]

  δ  opd  (i)   = variance [opd  (x, y )   (i)  −   ‾ opd  temp  ]   (21)

where opd ( x , y  )   (i)   is the   i   th   OPD image ( 1≦x≦M  and  
1≦x, y≦N, M  and  N  are the sizes of cardiomyocyte OPD 
image),   δ  opd  (i)    represents the variance of the   i   th   cardiomyo-
cyte image after temporal mean subtracted and    ‾ opd  temp    is 
the temporal mean which is calculated as the mean value of 
the stacked images in the temporal dimension.

The peaks are detected by applying the first derivation 
method. In addition, the positive and negative peaks are 
screened with a threshold value obtained by Otsu’s method. 
Consequently, the minimum negative peak between two 
neighboring positive peaks and the maximum positive 
peak between two neighboring negative peaks are selected. 
Similar to the previous section the beating profile within 
one beating period can be individually extracted and is 

fitted with the polynomial equation of degree 9 in a least 
square error sense. Finally, the same parameters similar to 
the  previous method are calculated and were found to be in 
excellent agreement with the reported results [79].

H. Cardiomyocytes Contraction and Relaxation 
Measurement

The contraction and relaxation feature of cardiomyo-
cyte can be obtained as follows. 1) Each captured image in 
the temporal stack is subtracted from the following one. 2) 
The spatial variance of the OPD is measured. 3) Quantify 
the amount of spatial displacement between successive 
frames. The output contains cardiomyocytes contraction 
and relaxation information [Fig. 24(a)]. According to Fig. 
24, one higher peak is for contraction and the neighboring 
lower peak is for the relaxation. The peaks can be detected 
with the first derivative criterion. Similarly, positive peaks 
for contraction can be properly extracted with Otsu’s 
thresholding algorithm by using all of the detected positive 
peaks. Next, a maximum peak between two neighboring 
contraction peaks is chosen as a positive peak for relaxation.  
The resulting curves from Fig. 24(a) with the selected peaks 
are shown in Fig. 24(b).

Finally, the detected peaks can be utilized to measure 
the beating rate, beating period and frequency for car-
diomyocytes contraction and relaxation. In addition, the 
interval for cardiomyocytes contraction and the relaxa-
tion can also be calculated with the detected peaks in 
Fig. 24(b). It is noted that the proposed methods can 
result in similar outputs concerning beating rate, beating 
period and frequency by using the same cardiomyocyte  
image pools.

The results and data presented in Section V illustrate 
that two-beam digital holographic quantitative phase 

Table 4 Characteristic Parameters of Cardiomyocyte [47]

23

23

23

23

23

23
Fig. 23. Explanation of the fitted curves with parameters during 
one beating period on cardiomyocytes beating activity [47].
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microscopy can be an effective tool to study the biophysi-
cal properties of cells and tissues. The extracted parameters 
provide insight into the working of the cell.

V I.  SELF-R EFER ENCING DIGITA L 
HOLOGR A PHIC MICROSCOPY

The two-beam digital holographic microscope 
 employing Mach–Zehnder geometry, discussed in the 
 previous section, is capable of providing accurate and 
detailed QPIs of cells. But as can be seen from Fig. 6,  
implementation of this microscope requires optical 

elements for beam-splitting and beam combining. So a 
compact, portable version of the microscope is difficult 
to realize. Also the ratio of the object and reference 
beams needs to be adjusted properly for high contrast 
interference fringes. In Mach–Zehnder geometry, as the 
two beams travel along different paths, they may pick up 
uncorrelated path length changes leading to lower tem-
poral phase stability, without a vibration isolation sys-
tem. In common path geometry, in which the reference 
beam is usually derived from the object beam itself, the 
two beams travel along the same path and encounter the 
same set of optical elements. This reduces the effect of 
uncorrelated path lengths increasing the temporal stabil-
ity of the system [50]–[54]. High temporal stability is a 
must to study fluctuations in cell thickness profile. One 
way to implement common path geometry is to convert a 
portion of the object wavefront into a separate reference 
beam by spatial filtering [50]–[54]. This requires optics 
for Fourier transformation of the object beam as well as 
its spatial filtering. An easier and simpler way to achieve 
common path geometry is by the use of self-referencing 
geometry [55]–[60]. In SRDHM, a portion of the object 
wavefront, which is not modulated by the object informa-
tion act as the reference and is made to interfere with 
the portions of the same wavefront, which is modulated 
by the object [55]–[60]. This makes the implementation 
of the setup easy, paving the way for compact, portable 
and highly temporally stable (without vibration isola-
tion) digital holographic microscopes. In this section we 
review our work on SRDHM and its application for imag-
ing of cell dynamics with subnanometer temporal stabil-
ity and its use in studying bio-physical aspects of cells and 
their identification [56]–[59].

A. Lateral Shearing SRDHM

One of the simplest ways to implement self-referenc-
ing geometry is to use a beam-splitting element to create 
two copies of the object wavefront and make them inter-
fere at the sensor plane [55], [56], [58]–[60]. This can be 
achieved using Michelson interferometer geometry [55], 
[60], where the object beams reflected from two mirrors 
interfere to create the holograms. Use of two mirrors add 
to the complexity of the setup and reduce its temporal 
stability. Another implementation used a mirror to fold a 
part of the object beam back on to itself by the use of a mir-
ror [57]. Here also the use of a separate mirror impedes 
the time stability of the system. The easiest way to imple-
ment self-referencing geometry is to use a lateral shear-
ing geometry as shown in Fig. 25 [56], [58]. A light beam 
derived from a laser diode module ( λ = 635  nm) is used 
to transilluminate the cells. This is then magnified by a 
microscope objective lens. Reflection from the front and 
back surface of a thick glass plate (thickness  ~ 4  mm)  

Fig. 24. Cardiomyocytes beating profile with contraction and 
relaxation information. (a) Original data of cardiomyocytes beating 
profile. (b) Cardiomyocytes beating profile with selected peaks for 
the contraction and relaxation measurements (inset shows a single 
beat with contraction and relaxation peaks) [47].
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made up of fused silica (refractive index  = 1 . 457  at  
635 nm) creates two versions of the object wavefront. 
They will be laterally displaced with each other when 
they reach the sensor plane where they interfere to 
form the holograms [82]. The amount of the lateral shift 
between the objects at the sensor plane depends upon 
the refractive index of the glass plate, thickness of the 
glass plate and angle of incidence of the wavefront at 
the glass plate. For sensor sizes ( ~5  mm  × 5  mm) much 
less than the size of the magnified wavefront, it can be 
assumed at all portions of the wavefront are incident on 
the shearing glass plate at the same angle. The lateral 
shift between the wavefronts can then be calculated to 
be approximately 3 mm [82].

If the lateral shear is much greater than the size of the 
magnified object at the hologram plane, then the image 
of the object from the front and back surface of the glass 
plate will not overlap, making it possible for portions of 
one of the wavefronts without object modulation to over-
lap with regions of its copy containing object informa-
tion, creating holograms rather than shearograms [56], 
[58]. This leads to lateral shearing digital holographic 
microscope (LSDHM). Holograms of glass  10-μm  diam-
eter microspheres recorded in the case of LSDHM using 
a microscope objective lens of  40 ×  magnification and  
NA    = 0.65  using an 8-bit CCD array of  4.65-μm  pixel 
pitch is shown in Fig. 26(a). Interference fringes formed 
by the object wavefronts from the front and back surface 
of the glass plate have opposite curvatures [Fig. 26(b) and 
(c)]. This can be understood from Fig. 25, which shows 

that the reference wavefront lags the object wavefront 
reflected from the front surface, and it leads object wave-
front reflected from the back surface. From Fig. 26(a) it 
can be seen that the shear amount is greater than the size 
of the magnified object.

Interference pattern shown in Fig. 26 can be regarded 
as a hologram and hence reconstructed just like a normal 
digital hologram. In this case also an object hologram 
with the object present in the field of view and a refer-
ence hologram with the medium surrounding the object 
in the field of view were recorded for extraction of quan-
titative phase information. Fig. 27 shows the reconstruct 
phase profile [inside the green rectangle in Fig. 26(a)] 
of  10-μm  polystyrene microspheres of refractive index 
1.58, immersed in oil of refractive index 1.53 obtained 
after numerical reconstruction of the hologram shown 
in Fig. 26(a).

Thickness distribution of the microspheres shown in 
Fig. 27(b) was computed using (5) after substituting for the 
refractive index values. Cross-sectional thickness profile 
[Fig. 27(c)] shows the ability of the technique for accurate 
thickness reconstructions.

B. Temporal Stability of LSDHM

LSDHM uses only a few optical elements and the object 
and reference beams travel along the same path while encoun-
tering the same set of optical elements. This will greatly 
improve the temporal stability of the setup making it possible 
to measure thickness fluctuations of cells under various con-
ditions. Temporal stability of the technique was measured by 
recording a time series of holograms while keeping a blank 
microscope slide in the sample holder. In the present case 
holograms were recorded at the rate of 30 Hz for 10 s (total of  
300 holograms). These holograms were numerically recon-
structed to extract the time varying phase profiles and 
the mean of the phase fluctuations at 10 000 randomly 
selected points from the entire field of view which acts as 

Fig. 25. Self-referencing digital holographic microscope based on 
lateral shearing configuration [56].

Fig. 26. Hologram recorded by LSDHM. (a) Whole field of view. (b), 
(c) Hologram formed by object wave reflected from the front and 
back surface of the glass plate, respectively.
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the temporal stability of the device. Fig. 28(a) gives a repre-
sentative plot, which shows the time varying phase profile 
at one of these randomly selected points. Fig. 28(b) is the  
histogram of the phase fluctuation for all the considered 
points [56]. The mean value of all these fluctuations corre-
sponds to an optical thickness variation of 0.66 nm for dura-
tion of 10 s. These experiments were conducted on a normal 
wooden table without any vibration isolation mechanism. 
Sub-nanometer temporal stability has been observed over 
longer duration also [56]. Along with its compactness, the 
temporal stability of the device makes it an attractive tool 
for extraction of both physical and mechanical parameters 
of cells under study.

C. Biophysical Studies of Human Red Blood Cells

In the case of red blood cells the physical and mechani-
cal properties of the cell depends upon the contents of the 
cell including hemoglobin. Physical parameters of the cells 
can be extracted from a single hologram and from a time 
series of holograms, its mechanical parameters can also be 
obtained [82]. These parameters may be useful in identify-
ing its state of health, cell contents and shedding light on its 
biophysical properties.

To compute the mechanical parameters of the cells hol-
ograms were recorded at the rate of 30 Hz using an 8-bit  
CCD array with pixel pitch of  4 . 65 μm . A  20 ×  microscope 
objective with NA    = 0 . 4  was used to magnify the cells. 
Fig. 29 shows the time variation in cell thickness fluctuation 
for a red blood cell extracted from sample with measured 
hemoglobin (Hb) content of 13.4g/dL.

Fluctuation profile of the cell for each second is com-
puted from the standard deviation of phase profile recon-
structed from a series of holograms recorded for a second at 
the rate of 30 Hz. The obtained fluctuation values matches 
those reported in literature [83]. From the fluctuation pro-
file amplitude and frequency of the cell thickness fluctua-
tions can be measured. Mechanical parameters for red blood 
cells from samples with different hemoglobin concentration 
are shown in Fig. 30.

From the physical and mechanical parameters, it was 
found that as the hemoglobin content in the red blood cell 
increases, the volume of the cell increases and the surface 
to volume ratio decreases. Fig. 30 also indicates that as the 
hemoglobin level increases there is a decrease in the ampli-
tude of thickness fluctuation and increase in frequency of 
thickness fluctuations. All these are indicative of a tight-
ening of the red blood cell membrane. The extracted cell 
parameters are sensitive to the cell content. So this tech-
nique can be used to quantify the cell content. This in turn 
can be used to identify diseases affecting the cells.

D. Toward Portable LSDHM

LSDHM provides QPIs comparable to that of the 
digital holographic microscope based on Mach–Zehnder 

Fig. 28. Temporal stability of LSDHM. (a) Phase variation at a single 
spatial point. (b) Histogram of the fluctuations from 10 000 random 
spatial points.

Fig. 29. Time varying thickness fluctuation in the case of human 
red blood cell.

Fig. 27. Experimental results with LSDHM. (a) Quantitative phase 
profile inside the green rectangle shown in Fig. 26(a) obtained after 
phase subtraction. (b) Computed thickness distribution. (c) Cross 
sectional thickness variation.
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configuration. It has the added advantage of high tempo-
ral stability without vibration isolation, while being com-
pact and easy to implement, requiring very few optical 
elements.

All these properties make it an ideal candidate for 
applications requiring portability. Also, now with the 
availability of low cost laser diode modules and cheap 
digital arrays like webcams, it is possible to construct a 
compact, portable and inexpensive quantitative phase 
imaging unit. Fig. 31 shows the photograph of the port-
able 3-D imaging module, which was 3-D printed. It 
used an off the shelf microscope objective lens, a laser 
diode module, a 5-mm-thick fused silica glass plate and a  
digital array.

Low cost version of the system in Fig. 31 used a VGA 
webcam array ( 3 . 2-μm  pixel pitch). Software for holo-
gram acquisition, reconstruction, physical and mechani-
cal cell parameter extraction was developed in-house. 
Fig. 32 shows the QPIs of human red blood cells obtained 
with the webcam sensor using a  20 ×  magnifying lens 
with numerical aperture (NA) of 0.4. It can be seen that 
even the low cost version provides detailed phase maps 
of the cells.

A series of holograms recorded with device also provides 
the thickness fluctuations of the cells under investigation as 
shown in Fig. 33.

The device provides phase and fluctuation profiles of 
the cells in real time. This portable unit also provides many 
important physical and mechanical cell parameters, usually 
measured using hematological analyzers, without manual 
intervention.

Nowadays, even low-cost smartphones have mega pixel 
cameras, fast processors and large memory. These phones can 

Fig. 30. Mechanical parameters of red blood cells from samples 
with different hemoglobin concentration. (a) Amplitude of 
thickness fluctuation. (b) Frequency of thickness fluctuation. (c) 
Variation of mean value of amplitude and frequency of thickness 
fluctuation with hemoglobin concentration

Fig. 31. Compact, portable and inexpensive LSDHM. The 
dimensions of the system are 19 cm × 17  cm × 6  × 6  cm (height  ×   
width  ×  depth).

Fig. 32. Live quantitative phase profile of human red blood cells 
obtained with low-cost portable version of LSDHM employing a VGA 
webcam (see Fig. 31).
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therefore be used to record, reconstruct and analyze holograms 
as well as for cell parameter extraction. Smartphones can be 
easily integrated into an LSDHM unit by using an eyepiece.

Fig. 34(a) shows a hologram of a  10-μm  diameter poly-
styrene bead immersed in oil, extracted from a 1080 p video 
recorded by a smartphone camera with  1 . 4-μm  pixel pitch.  
Numerical reconstructions [Fig. 40(c) and (d)] were carried 

out in an off-site personal computer, after transmitting the 
recorded holograms through Wi-Fi. The use of smartphones 
for recording of holograms makes the device  portability 
higher and opens the possibility of remote diagnosis and 
 telemedicine by using this device. Additionally, 3-D printing 
provides the capability for low cost large scale manufactur-
ing of the system [86].

V II.  ROA D A HE A D

Since digital holography with classification algorithms 
was proposed for automated cell identification and rec-
ognition [8], many variations of digital holographic 
microscopes have been reported for cell detection and  
identification, cell counting, identifying diseased red 
blood cells, etc. [9]–[12], [14]–[16], [34], [35], [40]–[43], 
[45]–[49], [84]–[90]. Digital holographic microscopes 
provide a real-time, label-free, high contrast quantitative 
phase profile of cells under various environments. The 
phase profile of the cell is directly related to its thickness 
profile and hence cell morphology can be obtained from 
a single hologram. This leads to extraction of physical 
parameters based on the cell shape. Also, from a series 
of holograms the mechanical properties of the cells and 
their dynamics can be studied and cell parameters based 
on time-varying morphology can be extracted. These 
parameters are useful in cell classification, identification 
and chemical free disease diagnosis, which will be a boon 
for clinicians. Biophysical aspects of cells, which will 
shed information on its physiology and growth, can also 
be investigated. So this tool will be helpful to research-
ers in studying new cells as well as those who work on 
designing new drugs, especially those which target spe-
cific cells. An inexpensive, compact, field portable ver-
sion of the 3-D microscope using self-referencing geom-
etry and/or lens-less systems employing pseudorandom 
encoding [84] may be ideal for on-field applications [85]. 
When coupled with a mobile device, it becomes an ideal 
tool for remote disease diagnosis and treatment.

Testing of the device for its potential clinical appli-
cations, initially as a hematology analyzer, is the next 
logical step. This requires the involvement of research-
ers especially from the area of life sciences. Algorithms 
providing better cell discrimination capability by com-
bining both physical and mechanical parameters and cell 
dynamics obtained using the device will be developed. 
Also this device has so far been tested in the laboratory 
environment, which may not mimic on-field conditions. 
So, another direction in which work is progressing is in 
testing the ability of the device for cell identification in 
the field. 

Fig. 34. Smartphone-based LSDHM. (a) Hologram extracted 
from a video recorded at 1080 p. (b) Region of interest inside the 
rectangle in Fig. 34(a). (c) Intensity reconstruction at the image 
plane. (d) Quantitative phase profile of the object.

Fig. 33. Thickness fluctuation of human red blood cell shown in  
Fig. 32.
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