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Conventional multiview imaging systems commonly utilize a planar lenslet array and a rigid, flat image sensor in
the pickup stage to capture different views of the scene. In this Letter, we remove this constraint by proposing the
concept of three-dimensional (3D) imaging with detector arrays that may conform to arbitrarily shaped surfaces or
platforms. A nonplanar detector array configuration can be used in combination with a flexible lenslet array to
capture different views. The orientation and optical axes of individual image sensing elements could vary. A
point-by-point 3D reconstruction algorithm is described and the feasibility of the proposed approach is demon-
strated through simulated imagery. © 2011 Optical Society of America
OCIS codes: 110.6880, 110.3010.

The century old integral photography idea [1] is being
pursued in its modern form for three-dimensional (3D)
imaging and display systems [2–8]. Among them, integral
imaging (II) systems use a planar sheet of lenslet array to
capture different two-dimensional (2D) views (elemental
images) of the scene on an image sensor. The ensemble
of elemental images encode the depth of each object
point in form of disparity. The aperture size, focal length,
pixel size, field of view, parallax, and relative arrange-
ment of elemental sensors are interrelated parameters
that involve design trade-offs [4,8]. A number of these
trade-offs arise from the fact that current 3D systems
are designed around the flat, rigid image detectors that
are widely available. As an example, the common field of
view of all elemental sensors has an inverse relationship
with parallax. A large parallax is desirable to improve the
3D capture capability of the system. As a result, maintain-
ing a large field of view with large parallax poses a chal-
lenge in II with flat image sensors [8].
However, with advancements in flexible electronics,

both organic and inorganic material can be integrated
on elastomeric substrates to create deformable electro-
nic devices [9,10]. Several successful demonstrations of
nonplanar detector arrays have already been undertaken,
inspired by the most ubiquitous visual sensor, retina [11],
as well as optical advantages provided by such detector
arrays for compact optical design [12]. Such advanced
detector arrays can be leveraged for 3D imaging to facil-
itate novel designs. Some conceivable applications
include adding visual 3D sensing capability to endo-
scopic medical instruments, vehicles’ bodies, advanced
3D borescopes, soldiers’ helmets, or aircraft wings with
minimal structural constraints.
In this Letter, we propose the concept of 3D imaging

with nonplanar detector arrays that may conform to ar-
bitrarily shaped surfaces or platforms, as shown schema-
tically in Fig. 1. An array of lenslets embedded in an
elastic scaffold can be integrated with a flexible optoelec-
tronic detector array in an arbitrary nonplanar configura-
tion. The resulting image sensor can conform to curved
surfaces, with each elemental sensor having a unique op-
tical axis. To eliminate the cross talk between images of
neighboring lenslets, a matching parallax barrier array

can be mounted in between the lenslet array and the
image detector array.

Conventional II reconstruction algorithms fail to re-
construct the scene from imagery acquired by such an
arbitrary sensor configuration [4,8]. Here, a generalized
framework is developed that is based on a point-by-
point computational image reconstruction using the ray
intensity-angle information that is captured by the pro-
posed sensor. The feasibility of the proposed 3D imaging
scheme is demonstrated through simulated imagery with
realistic device parameters.

Consider a Cartesian coordinate system as the global
frame of reference described by unit vectors x̂; ŷ and ẑ, as
shown in Fig. 1. Each elemental sensor in a flexible sen-
sor array device can be characterized by the center posi-
tion of its aperture, pi, as well as two orthogonal unit
vectors, ûi and v̂i, in the horizontal and vertical direc-
tions of the detector array, as shown in Fig. 1. The ith
unit normal vector is thus computed by n̂i ¼ ûi × v̂i, such
that ðûi; v̂i; n̂iÞ forms a right-hand local coordinate sys-
tem for each elemental sensing unit. The normal Eucli-
dean distance of a point in object space, ro, from the
principle point of the ith lenslet can be written as
jðpi − roÞ:n̂ij. The magnification associated with area in
the vicinity of point ro with respect to the ith lenslet
can thus be written as

Fig. 1. (Color online) Proposed 3D image sensor, which is
composed of many arbitrarily arranged elemental sensors. Inset
shows the ith elemental sensor notations.
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MiðroÞ ¼ jðpi − roÞ:n̂ij=g; ð1Þ

where g is the gap between the lenslet and the image de-
tector. The detector area behind each lenslet is assumed
to have a curvature within the depth of focus of the lens-
let. The depth of focus of each lenslet can be written as
df ≃ 2gμ=D, within which the defocus is contained to
pixel size. The radius of curvature, r, of the detector ar-
ray behind each lenslet should not exceed the limit set by
depth of focus, i.e.,

r ≥ ðD2 þ 4d2f Þ=2df : ð2Þ
Except for extremely sharp corners, this condition is not
hard to satisfy in most practical applications.
Now, let the projection of an object point, ro, on the ith

elemental sensor be denoted as rip (see Fig. 1). Since
point pi is, in fact, parting line segment rorip by the mag-
nification ratio 1∶MiðroÞ, the projected point rip coordi-
nates can be written as

rip ¼ 1þMiðroÞ
MiðroÞ

pi −
1

MiðroÞ
ro: ð3Þ

Given unit vectors ðûi; v̂iÞ, it is straightforward to convert
the position rip in R3 (3D real space) to the local pixel
location index, ½ui; vi�T, in C2

i (2D discrete space) on
the detector array as

�
ui

vi

�
¼ 1

μ

� ðrip − CiÞ:ûi
ðrip − CiÞ:v̂i

�
; ð4Þ

where μ is the pixel size andCi is the midpoint of the area
associated with the ith elemental sensor. Coordinates of
this point can be computed by

Ci ¼ pi − gn̂i: ð5Þ

Substituting Eqs. (3) and (5) in Eq. (4), one can find a
unique transformation for the ith elemental image, T ið:Þ,
which maps the object space points, ro, onto the corre-
sponding pixel index of the ith elemental sensor, i.e.,
T i∶R3↦C2

i , as

T iðroÞ ¼
�
ui

vi

�
¼ 1

μMiðroÞ
� ðpi − roÞ:ûi
ðpi − roÞ:v̂i

�
: ð6Þ

Equation (6) provides a map between the object space,
R3, and the discrete ith elemental sensor pixel index, C2

i .
Such a map represents a perspective transformation be-
tween the two spaces and, as such, neither preserves the
distances nor the angles. With the aid of Eq. (6), one can
find the corresponding pixel to a particular object point
on all elemental images, each represented by Ei. For ob-
jects with Lambertian (diffusively scattering) surfaces,
the intensity, Î, of each object point can be approximated
by a weighted average of the corresponding pixels on all
elemental sensors as

ÎðroÞ ¼ N−1ðroÞ
XK
i¼1

wiðroÞαiðroÞEiðT iðroÞÞ; ð7Þ

wherewiðroÞ ¼ 1, if object point ro falls within the field of
view of the ith lenslet and zero, otherwise

wiðroÞ ¼
�
1 ðpi−roÞ:n̂i

jpi−roj ≤ cosðθiÞ
0 otherwise

; ð8Þ

where θi ¼ tan−1ðDi=2gÞ is the half-angle determining the
field of view of the ith lenslet with aperture diameter Di.

Note that NðroÞ ¼
P

K
i¼1 wiðroÞ is the total number of

lenslets that have captured object point ro. Also, αiðroÞ ¼
ρ2i ðroÞ=Di compensates for variations in object point
distance, ρiðroÞ, and light collection efficiency due to
aperture size, Di.

Equation (7) provides a systematic way of reconstruct-
ing object space through a set of arbitrary points that can
be chosen arbitrarily in a volume or on a surface or a line.
In the special case that the chosen points lie on a grid re-
presenting a planar surface, the reconstructed images are
similar to digital reconstruction in the II technique [8].

The density of reconstructed points is arbitrary. How-
ever, one should note that geometrical and wave optics
requires that the angular separation of two reconstruc-
tion points, δ, to be larger than the diffraction limit or the
geometrical resolution imposed by sensor pixelation,
i.e., δ ≥ minð1:22λ=D; μ=gÞ.

To demonstrate feasibility, a 4000 × 4000 pixel non-
planar detector array with pixel size μ ¼ 5 μm (100% fill
factor) is modeled by a computer with the profile

z ¼ 7 sinð0:4xÞ þ 0:5 cosð0:3yÞ; 10 ≤ x; y ≤ 10;

ð9Þ
in which dimensions are in millimeters. x, y, and z denote
the coordinate system parameters. The image forming
optics is an array of 20 × 20 circular aperture lenslets
with a diameter of D ¼ 1mm mounted at g ¼ 3mm from
the detector, resulting in θ ¼ 9:4°. There are approxi-
mately 200 × 200 pixels associated with each elemental

Fig. 2. (Color online) Subset of nine elemental images (out of
400) that capture different views of the objects in the scene.
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image. This imaging configuration allows for mounting
the sensor on a ball with a radius equal to rmax ¼ 4:2mm,
according to Eq. (2).
Elemental images are simulated by 3D rendering of a

scene containing a model car, vegetation, and a bicycle.
The length of the model car is 5 cm. The sensor is placed
30 cm from the objects. Figure 2 shows a subset of cap-
tured elemental images.
The reconstruction surface is generated to be planar

with a normal vector of n̂r ¼ ð1; 1; 1Þ in the global frame
of reference. Using Eq. (7), six reconstruction planes are
generated, as shown in Fig. 3, in each panel of which a
part of the scene is in focus. The reconstruction planes
can be written mathematically as n̂r:ro ¼ −zj, where zj is
the distance of the jth plane to the origin.
The proposed image reconstruction framework allows

for desired coarse or fine reconstruction on arbitrary 2D
manifolds, e.g., arbitrarily shaped surfaces. The algo-
rithm complexity is only linearly proportional to the num-
ber of object space points being reconstructed. This

approach can be extended to the sparse aperture 3D ima-
ging case, where information from individual sensors in
different locations and/or with different intrinsic para-
meters, e.g., focal length, field of view, or pixel size, can
be combined to computationally reconstruct the scene
in 3D.

In addition, many common computational tasks, such
as object recognition, compression, or occlusion re-
moval, can be applied to the scene under survey in the
3D domain. An important advantage of the proposed re-
construction framework is that the user is no longer lim-
ited to reconstructing the field on a plane parallel to the
lenslet array (perpendicular to optical axis). One has the
flexibility to reconstruct the field on a set of arbitrarily
shaped planes or a point cloud with desired density, such
as to maximize an objective metric in the task at hand.
This extra degree of flexibility can be utilized to improve
the effectiveness of such algorithms.
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Fig. 3. (Color online) Reconstruction planes with n̂ ¼ ð1; 1; 1Þ
at zj ¼ −9mm, 5mm, 19mm, 30mm, 55mm, and 60mm, where
the car rear wheel, the passenger seat, the side mirror, the front
of the car, the rear bicycle wheel, and the bicycle body are in
focus, respectively.
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