
Compact and field-portable 3D printed shearing
digital holographic microscope for automated
cell identification
SIDDHARTH RAWAT,1 SATORU KOMATSU,1 ADAM MARKMAN,1 ARUN ANAND,2 AND BAHRAM JAVIDI1,*
1Electrical and Computer Engineering Department, University of Connecticut, 371 Fairfield Road Unit 2157 Storrs, Connecticut 06269, USA
2Applied Physics Department, Faculty of Technology and Engineering, Maharaja Sayajirao University of Baroda, Vadodara 390001, India
*Corresponding author: bahram@engr.uconn.edu

Received 12 October 2016; revised 5 February 2017; accepted 12 February 2017; posted 13 February 2017 (Doc. ID 278544);
published 6 March 2017

We propose a low-cost, compact, and field-portable 3D printed holographic microscope for automated cell
identification based on a common path shearing interferometer setup. Once a hologram is captured from the
portable setup, a 3D reconstructed height profile of the cell is created. We extract several morphological cell
features from the reconstructed 3D height profiles, including mean physical cell thickness, coefficient of variation,
optical volume (OV) of the cell, projected area of the cell (PA), ratio of PA to OV, cell thickness kurtosis, cell
thickness skewness, and the dry mass of the cell for identification using the random forest (RF) classifier. The
3D printed prototype can serve as a low-cost alternative for the developing world, where access to laboratory
facilities for disease diagnosis are limited. Additionally, a cell phone sensor is used to capture the digital holo-
grams. This enables the user to send the acquired holograms over the internet to a computational device located
remotely for cellular identification and classification (analysis). The 3D printed system presented in this paper
can be used as a low-cost, stable, and field-portable digital holographic microscope as well as an automated cell
identification system. To the best of our knowledge, this is the first research paper presenting automatic cell
identification using a low-cost 3D printed digital holographic microscopy setup based on common path shearing
interferometry. © 2017 Optical Society of America

OCIS codes: (090.0090) Holography; (090.2880) Holographic interferometry; (170.3880) Medical and biological imaging; (170.6900)

Three-dimensional microscopy; (070.5010) Pattern recognition.
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1. INTRODUCTION

Digital holographic microscopy (DHMIC) is a label-free imag-
ing modality that enables the viewing of microscopic objects
without the use of exogenous or contrast agents. DHMIC pro-
vides high axial accuracy; however, the lateral resolution is
dependent on the magnification of the objective lens used.
DHMIC overcomes two problems associated with conven-
tional microscopy: the finite depth of field, which is inversely
proportional to the magnification of the objective, and low con-
trast between the cell and the surrounding media. Cells alter the
phase of the probe wavefront passing through the specimen,
depending on the refractive index and thickness of the object
[1–13]. Several methods have been developed to transform the
phase information of the object into amplitude or intensity in-
formation [14,15], but these methods only provide qualitative
information and lack quantitative information. Staining meth-
ods, such as the use of exogenous contrast agents, can enhance
the image contrast, but it might change the cell morphology or

be destructive. Due to the availability of fast CCD and CMOS
sensors, it is possible to record digital holograms in real time
[7]. The recorded holograms can be numerically reconstructed
by simulating the process of diffraction using scalar diffraction,
leading to the complex amplitude of the object. This complex
amplitude contains the spatial phase information of the object,
from which one can reconstruct the phase profile of the object.
In [16], a digital holographic microscope integrated with pat-
tern recognition algorithms was proposed for automated cell
identification. A variety of digital holographic approaches have
been proposed for automated cell identification [17–20].

Digital holography and microscopy are complementary
techniques, and when combined, they can be useful for study-
ing cells in a quantitative manner. To study dynamic param-
eters of the cell, such as cell membrane fluctuations, one needs a
very stable setup because these fluctuations occur over just a few
nanometers. The problem with existing digital holographic
(DH) microscopy setups, which use a double path configuration,
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is that the beams travel in two different arms of the interfer-
ometer and are then combined using a beam-splitter. As a re-
sult, the two beams may acquire uncorrelated phase changes
due to mechanical vibrations. In comparison to two beam
or double path interferometric setups, common path setups
are more robust and immune to mechanical vibrations. In a
common path setup, the two beams travel in the same direc-
tion, that is, the direction of beam propagation. There are many
common path configurations; however, we chose the self-
referencing lateral shearing configuration due to simplicity and
cost-effectiveness [21–23].

In this paper, we present a low-cost, compact, and field-
portable 3D printed DH imaging system that can be used for
automated cell identification. The system consists of a laser
source, a microscopic objective lens, a glass plate, and an im-
aging device (CMOS camera or a cell phone camera). The com-
ponents used to build the setup are off-the-shelf optical
components or printed from a 3D printer, leading to a low-
cost, compact, and field-portable bio-sensing device. Once a
hologram is recorded, a 3D profile reconstruction is created.
Features are extracted from the reconstruction. The features
are input into a pre-trained random forest classifier, which then
identifies the cell. The system presented in this paper can be
used as a low-cost, stable, and field-portable DH microscope
and an automated cell identification system. The paper is
arranged as follows. In Section 2, we give a detailed description
about the common path shearing setup, the camera parameters,
and the reconstruction algorithm. Experimental results are
presented in Section 3, and finally, conclusions are given in
Section 4.

2. MATERIAL AND METHODS

A. System Design and Camera Parameter Estimation
The schematic for the common path setup used for cell iden-
tification is shown in Fig. 1. A laser source (λ � 633 nm)
illuminates the sample under inspection and a microscopic ob-
jective magnifies the sample. A fused silica glass plate splits the
beam, generating two laterally sheared object beams. These two
sheared beams interfere over the imaging sensor (CMOS or cell
phone), and interference fringes are observed.

For the DHMIC setup in Fig. 1, the CMOS sensor used
was a Thorlabs 8 bit, 5.2 μm pixel pitch, model DCC1545M,
which has a large dynamic range and a 10-bit internal analog-
to-digital conversion, but it transfers images to the PC with a

bit depth of 8 bits to improve the readout time of the camera.
For the cell phone sensor setup, a Google Nexus 5, which
has an 8 MP primary camera, 1/3.2″ sensor size, and 1.4 μm
pixel size, was used. Moreover, the cell phone camera uses
8 bits∕channel. When comparing the camera sensor with the
cell phone sensor, the dynamic range of the cell phone sensor
may be lower due to the small sensor and pixel size, as the pixel
wells fill quicker due to low saturation capacity. Moreover, the
cell phone sensor has a Bayer filter for color detection. Finally,
the cell phone camera sensor has a lower SNR than the CMOS
camera. One reason is that the images generated from the
cell phone camera were in the JPEG format, which is a lossy
compression scheme resulting in a poorer image quality. The
CMOS camera can save images as .bmp, which does not com-
press the images.

It is important to calculate the camera parameters. We used
ImageJ (a public domain software: https://imagej.nih.gov/ij/) to
establish an equivalence between the pixel covered by the object
(also taking optical magnification into account) and the dis-
tance in microns for the cell phone sensor and CMOS. Figure 2
shows the equivalence between the pixels and the distance
in microns.

The test object used in Fig. 2 is a 20-μm glass bead (SPI
supplies), the other beads as observed in Fig. 2 (solid yellow
boxes around the objects) are the sheared copies of the same
objects. Moreover, the field of view (FOV) of the DH micro-
scope depends on the objective and eyepiece lens used. A higher
magnification objective gives a small FOV, as the sensor must
image a more magnified object in comparison to a lower mag-
nification lens; hence, a relatively smaller, magnified specimen
region can be imaged on the sensor. We used 40× objective
lenses with a numerical aperture (NA) of 0.65. The actual
magnification depends on the placement of the camera sensor
from the objective. The theoretically achievable lateral resolu-
tion with this objective is 0.595 μm. The eyepiece used with
the cell phone setup has a magnification of 25×. Table 1
summarizes the parameter values for CMOS and the cell
phone sensor. Figure 3 depicts the 3D printed prototype of
the DH microscope.

Figure 3 is a prototype with CMOS sensor, which is analo-
gous to the schematic shown in Fig. 1(a). To use the cell phone
sensor with the 3D printed setup shown in Fig. 3, we simply
replaced the CMOS with the eyepiece and the cell phone, as
shown in Fig. 1(b). A cell phone adapter was 3D printed to
hold the camera and eyepiece in place. This system weighs
4.62 kg with the HeNe laser and breadboard and 800 g without

Fig. 1. Proposed single path setup (a) using a CMOS sensor and
(b) using a cell phone sensor.

Fig. 2. FOVs of (a) a cell phone and (b) CMOS sensor used in the
experiments.
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the HeNe laser and breadboard. In addition, we designed and
constructed a more compact 3D-printed DHMIC prototype
with a smaller form factor, which is shown in Fig. 4. This sys-
tem uses a laser diode (Thorlabs, CPS 635) with a wavelength
of 635 nm and an elliptical beam profile in place of the HeNe
laser. Moreover, the system weighs 910 g (without the base) and
1.356 kg (with the base).

In Fig. 4, the dimensions of the 3D printed DHMIC proto-
type are 75 × 95 × 200 mm.

B. 3D Reconstruction of Micro-Objects Using the
3D-Printed Shearing DH Setup
For the 3D printed DHMIC setup (see Fig. 3), a collimated
HeNe laser beam passes through a sample that is magnified
by an objective lens (40× magnification). In this DH micro-
scope employing lateral shearing geometry, holograms, instead
of shearograms, are formed at the detector [24]. This is
achieved by introducing shear much larger than the magnified
object image so that the images from the front and back surface
of the glass plates are spatially separated. Portions of the wave-
front (reflected from the front or back surface of the glass plate)
unmodulated by the object information act as the reference
wavefront and interfere with portions of the wavefront (re-
flected from the back or front surface of the glass plate) modu-
lated by the object, which acts as the object wavefront. If the
shear amount is larger than the sensor dimension, the second
image (either due to reflection from the front or back surface)

falls outside the sensor area. If the sensor dimension is more
than the shear amount, redundant information about the ob-
ject is recorded. It should be noted that the full NA of the mag-
nifying lens is utilized in the formation of the holograms. As a
result, full spectral information is used in the image reconstruc-
tions, and only the NA of the imaging lens limits the imaging.

In the reconstruction, the size of the filter window of the
Fourier transformed holograms needs to be limited due to un-
wanted sidebands. These sidebands may appear because of the
non-uniform intensity variation at the detector plane, leading
to a change in the contrast of the interference fringes. Another
reason may be intensity image saturation leading to a non-
sinusoidal fringe pattern. In addition, the size of the filter win-
dow decides the maximum spatial frequency available in the
reconstructed images. In the case of CMOS sensors and cell
phone cameras, the lateral resolution in the reconstructed im-
ages is not limited by the imaging lens, but by the size of the
filter window. In our setup, the computed lateral resolution of
the system (see Figs. 1 and 3), taking into consideration the
filter window size, is approximately 1.2 μm. In addition, for
the system (blue shearing setup, see Fig. 4) with the laser diode
and CMOS sensor, the computed lateral resolution is 0.9 μm.

The lateral shear caused by the glass plate helps to achieve
off-axis geometry, which enhances the reconstructions and sim-
plifies the numerical processing of the digital holograms, which
is not possible in in-line DHMIC setups such as Gabor holog-
raphy [25]. Moreover, the carrier fringe frequency of the inter-
ferogram must not exceed the Nyquist frequency of the sensor,
as the carrier fringe frequency is related to the off-axis angle
caused by the lateral shear generated by the glass plate. This
means the fringe frequency is a function of the thickness of the

Fig. 3. 3D printed prototype of the DH microscope (with CMOS
sensor) with the dimensions of 304 × 304 × 170 mm (with the bread-
board). The weight of the system is 4.62 kg with the HeNe laser and
breadboard and 800 g without the HeNe laser and breadboard.

Table 1. Camera Parameters

Camera Type

Camera Parameters CMOS Cell Phone Sensor

Magnification 52× 17×
Available sensor area (ASA) 35 mm2 7.78 mm2

Usable FOV (vertical) 104 μm 260 μm
Usable FOV (horizontal) 130 μm 260 μm
Pixel size 5.2 μm 1.4 μm
Sensor type Mono Color

Fig. 4. Compact 3D printed prototype of the DH microscope with
a laser diode with the dimensions of 75 × 95 × 200 mm. The setup
weighs 910 g (without the base) and 1.365 kg (with the base).
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glass plate. Thus, a thicker glass plate can be used to increase
the off-axis angle. The fringe frequency is f s � S∕rλ, where S
denotes the lateral shift induced by the glass plate, λ is the wave-
length of light source, and r is the radius of curvature of the
wavefront [26]. Moreover, the relationship between shift (S),
glass plate thickness (t), incidence angle on glass plate (β),
and refractive index of glass (n) is given as follows: S∕t �
Sin�2β� �n2 − sin β�−1∕2 [27]. Hence, a 3–5-mm glass plate is
sufficient for our experiments, enabling spatial filtering the
spectrum and satisfying the Nyquist criteria for sampling. To
have more control over the off-axis angle, a wedge plate can
be used.

The object reconstruction process is shown in Fig. 5. The
Fourier transform of the digital hologram is taken, filtered
(digital filtering of the real part of spectrum in Fourier domain),
and then inverse Fourier transformed, generating the phase
map. We recorded two holograms: one with object and back-
ground (HO) and another with background only (HR). We
inverse Fourier transformed the filtered spectrums separately
to obtain the object and background phase (ΔϕO) and the
background phase (ΔϕR). To obtain the phase information
due to object only, we subtract the phase map of object and
background from the phase map with background only; this
process also removes most of the system-related aberrations.

The phase was then unwrapped using the Goldstein’s branch
cut method [28]. After phase unwrapping, we compute the
cell height/thickness [21–23,29], Δh, where ΔϕUn is the
unwrapped phase difference, λ is the source wavelength, and
Δn is the refractive index difference between the object and the
surroundings.

3. EXPERIMENTAL RESULTS

A. Imaging Test Microspheres and Cells for the 3D
Printed Setup Using a HeNe Laser
To test the performance of the system, which utilized the
CMOS camera shown in Fig. 3(a), we used 20-μm glass micro-
spheres (SPI supplies) with a mean diameter of 19.9� 1.4 μm
and average refractive index no � 1.56. These microspheres
were immersed in oil (average refractive index, nm � 1.518)
and then spread on a thin microscopic glass slide and covered
with a thin coverslip. The digital holograms were recorded, and
the 3D profiles were reconstructed using the steps mentioned
in Fig. 5. In Fig. 5, Δn � no − nm, is the refractive index differ-
ence between the object and surrounding medium used in the

reconstruction process. The reconstruction results using the
steps mentioned in Fig. 5 are implemented and shown in
Fig. 6. Figure 6(a) is the digital hologram of a 20-μm glass bead,
acquired using the CMOS sensor. Figure 6(b) shows the un-
wrapped phase profile of the bead. Figure 6(c) shows the height
variations, as depicted by color maps, and Fig. 6(d) is the
one-dimensional cross-sectional profile, along the line [see
Fig. 6(c)]. Figure 6(e) shows the pseudocolor 3D rendering of
the thickness profile for the same bead. We computed the
thickness/diameter for 50 20-μm glass microspheres, where
the mean diameter was 17.38� 1.38 μm, which was close to
the thickness value specified by the manufacturer.

The experiments were repeated for biological cells, such
as Diatom–Tabellaria (nm � 1.50) and E. coli bacteria
(nm � 1.35). Both cell types were immersed in deionized water
(nm � 1.33). Figure 7(a) shows the digital hologram of the
Diatom–Tabellaria cells. Figure 7(b) shows the height varia-
tions depicted by color maps, Fig. 7(c) shows the 1D cross-
sectional profile of the diatom along the line, and Fig. 7(d) is
the reconstructed 3D height profile for the diatom. Likewise,
Figs. 7(e)–7(h) are the digital hologram, the height variations
depicted by color maps, the 1D cross-sectional profile along the
line [see Fig. 7(f )], and the reconstructed 3D height profile for
the E. coli bacteria. From Fig. 7(h), one can see that the length
of E. coli is close to 12 μm, the width is between 2–4 μm, and
maximum height is 0.6 μm.

B. Imaging Test Microspheres and Cells for the More
Compact 3D Printed Setup Using a Laser Diode
To show the 3D reconstruction capabilities with the more
compact 3D printed DH microscope shown in Fig. 4, we
implemented numerical reconstruction steps, as mentioned
previously for Fig. 5. Figure 8(a) is the digital hologram of a
20-μm glass bead (no � 1.56) immersed in oil (nm � 1.5181)
that was acquired using the CMOS sensor. The bead dia-
meter (obtained experimentally) is 17.427μm� 0.9029 μm.
Figure 8(b) shows the unwrapped phase profile of the bead.
Figure 8(c) shows the height variations depicted by the color
maps, and Fig. 8(d) is the one-dimensional cross-sectional pro-
file along the line [see Fig. 8(c)]. Figure 8(e) shows the pseudo-
color 3D rendering of the thickness profile for the same bead.

Fig. 5. Flowchart of the 3D reconstruction algorithm from the
recorded hologram. Δn � no − nm is the refractive index difference
between the object and surrounding medium.

Fig. 6. Experimental results for the compact 3D printed DHmicro-
scope shown in Fig. 3 using the CMOS sensor. (a) Digital hologram of
a 20-μm glass bead. (b) Unwrapped phase profile of the same bead.
(c) 2D thickness profile. (d) 1D cross-sectional profile of the bead
along the line shown in (c). (e) Pseudocolor 3D rendering of the thick-
ness profile for the glass bead.
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Likewise, we perform 3D reconstructions for yeast cells
(no � 1.53) immersed in deionized water (nm � 1.33).
Figure 9(a) is the digital hologram of yeast cells immersed in
distilled water acquired using the CMOS sensor. Figure 9(b)
shows the unwrapped phase profile of the cells. Figure 9(c)
shows the height variations depicted by color maps, and
Fig. 9(d) is the one-dimensional cross-sectional profile, along
the line [see Fig. 9(c)]. Figure 9(e) shows the pseudocolor 3D
rendering of the thickness profile for the same cells.

In the reconstructions, roughness around and on the ob-
jects is observed. This roughness can be attributed to optical

thickness variations. Microspheres may not be smooth.
Moreover, the optical thickness variation of the object and
its surroundings depends on either change in the real thickness
or due to spatially changing refractive index (due to density
change) in the micro-sphere and its surroundings. The size
of the roughness is approximately 1–2 μm, which becomes vis-
ible as the window size becomes large enough to accommodate
the spatial frequencies. One can obtain smooth reconstructions
if the size of the filter window is reduced. Other possible rea-
sons for the roughness is sample deformations and the presence
of impurities.

C. Temporal Stability of the Compact 3D Printed DH
Microscope Setup
Our setup (see Figs. 1 and 3) is the common path digital holog-
raphy and exhibits a very high temporal stability [21] in con-
trast to the two beam configurations such as Michelson and
Mach–Zehnder, where the two beams may acquire uncorre-
lated phase changes due to vibrations. To determine the tem-
poral stability of the 3D printed prototype (Fig. 3), we recorded
a series of fringe patterns or movies for a glass slide without
any object. We recorded 9000 fringe patterns for 5 min at a
frame rate of 30 Hz for a sensor area of 128 × 128 pixels
(15.8 × 15.8 μm) using the “windowing” functionality of the
CMOS sensor for the setup shown in Fig. 3. CMOS sensors
can read out a certain region of interest (ROI) from the whole
sensor area, which is known as windowing. One of the advan-
tages of windowing is the elevated frame rates, which makes
CMOS a favorable choice over CCDs to study the dynamic
cell membrane fluctuations. One of the main reasons for using
a small sensor area (128 × 128 pixels) is because processing the
whole sensor area images (1280 × 1024 pixels) may be compu-
tationally expensive and time consuming. Path length changes
were computed by comparing the reconstructed phase distribu-
tion for each frame (containing the fringe patterns) to a previ-
ously recorded reference background. It should be noted that
the 3D-printed DHMIC prototype was not isolated against
vibrations, that is, it was not placed on an air floating optical
table. We computed standard deviations for a total of 16,384
(128 × 128) pixel locations. Figure 10 shows the histogram of
standard deviation fluctuations with a mean standard deviation
of 0.24 nm. With the 3D printed DHMIC prototype, we

Fig. 7. (a) Digital hologram of Diatom–Tabellaria using the
CMOS sensor. (b) 2D thickness profile. (c) 1D cross-sectional profile
of diatom along the line shown in (b). (d) Pseudocolor 3D rendering of
the thickness profile for the diatom. Likewise, (e)–(h) are the digital
hologram, 2D thickness profile, 1D cross-sectional profile, and
pseudocolor 3D rendering of the thickness profile for E. coli bacteria,
respectively.

Fig. 8. Experimental results for the more compact 3D printed DH
microscope as shown in Fig. 4. (a) Digital hologram of a 20-μm glass
bead. (b) Unwrapped phase profile of a 20-μm glass bead and (c) 2D
thickness profile. (d) 1D cross-sectional profile of the bead along the
line shown in (c). (e) Pseudocolor 3D rendering of the thickness
profile for the glass bead.

Fig. 9. Experimental results for the more compact 3D printed DH
microscope shown in Fig. 4. (a) Digital hologram of yeast cells.
(b) Unwrapped phase profile for the same cells. (c) 2D thickness pro-
file. (d) 1D cross-sectional profile of the yeast cells along the line
shown in (c). (e) Pseudocolor 3D rendering of the thickness profile
for the yeast cells.
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achieved sub-nanometer temporal stability of the order of
0.24 nm without any vibration isolation. This can be highly
beneficial in the study involving cell membrane fluctuations,
which are on the order of tens of nanometers.

D. Feature Extraction and Automated Cell
Classification
From the 3D reconstructions of micro-objects, we extracted a
series of features: mean physical cell thickness, coefficient of
variation (COV), optical volume (OV) of the cell, projected
area of cell (PA), ratio of PA to OV, cell thickness kurtosis,
cell thickness skewness and the dry mass of the cell [19,30].
Before extracting these features, we applied Otsu’s algorithm,
which clusters based on image thresholding on the 2D un-
wrapped phase images. These eight features are morphological
cell features that contain more information than the extracted
features from the 2D bright-field microscopic images.

The random forest (RF) classifier [31] was chosen for cell
identification/classification. RF is an ensemble learning method
used for classification tasks. In this classifier, a decision is taken
by considering the majority vote from the outputs of the de-
cision trees consisting of nodes, branches, and leaves. Using the
RF classifier, we performed classification on data obtained from
the CMOS and cell phone using the setup in Figs. 1 and 3. A
dataset of unwrapped phase images was created for four classes:
10-μm polystyrene bead, 20-μm glass bead, Diatom–Tabellaria
fenestrate, and frog blood cell. 3D profiles were reconstructed
from the CMOS acquired digital holograms by processing a
total of 200 phase images (50 images per class) using the steps
described in the Fig. 5. This forms the true class dataset. In
addition, false class data that did not belong to any of the four
classes was recorded. The false class data consisted of 3D recon-
structions of digital holograms of the class of 20-μm polysty-
rene beads. A total of 50 false class 3D reconstructions were
used. From these 3D reconstructions, we extract several cell
features such as mean physical cell thickness, COV, OV of
the cell, projected area of cell (PA), ratio of PA to OV, cell
thickness kurtosis, cell thickness skewness, and the dry mass
of the cell. After the feature extraction process, the RF classifier
was trained on the true class data. The true class dataset was
split in such a way that 30 reconstructions (features) from each
class were used to train the classifier, and the remaining 20 were
used for testing. For the RF model, 100 decision trees were

used and Gini diversity index (GDI) criteria was used to form
the trees from the training data. To determine the reliability
of the classifier, we examined the scores or percentage of trees
that voted for that class. If the scores were below 75%, we de-
termined that the class output was not reliable, and the data was
false class. Table 2 depicts the confusion matrix for the classi-
fier, which is calculated by �TP� TN�∕N, where TP is the
number of true positives, TN is the number of true negatives,
and N is the total number of test data. The classifier had an
accuracy of 95.38% for CMOS-acquired data.

We also recorded digital holograms with a cell phone sensor
using the setup in Fig. 1(b) with the same micro-objects. There
were 200 true and 50 false reconstructions (features). For train-
ing, 120 true reconstructions were used and 80 true and 50
false reconstructions (features) were used for testing. The clas-
sifier had an accuracy of 93.85%. Table 2 describes the con-
fusion matrix for the cell phone sensor-based acquisition
system. One reason for the marginally lower classification
accuracy for the system using the cell phone sensor is that
the recorded images were in the JPEG format, which is a lossy
compression scheme resulting in a poorer image quality, while
the CMOS camera can save images as .bmp, which does not
compress the images. In addition, we note that the cell phone
camera has a lower SNR than the CMOS camera. Also, the
dynamic range of the CMOS is higher than the cell phone
sensor due to larger sensor areas and pixel sizes. An accuracy
of 93.5% using the cell phone system can be considered high
enough for classification-related tasks and shows that cell phone
sensors are capable of reliable hologram acquisition, which can
be used for automated cell identification.

4. CONCLUSION

In summary, we designed and built a low-cost, compact, and
field-portable 3D printed DHmicroscope (see Figs. 1, 3, and 4).
The microscope requires a minimal number of off-the-shelf
optical components compared to complex and sophisticated
two beam setups. The 3D printed prototype exhibits a high
temporal stability of the order of 0.24 nm according to our
experiments, which is highly desirable in studies involving cell
membrane fluctuations or to study cell dynamics. Feature
extraction was performed separately for the CMOS and cell
phone acquired data, and the cells were classified using the
RF classifier. High accuracies for cell classification have been
achieved for both CMOS and cell phone sensors. In addition,
a high classification accuracy of 93.85% shows that cell phone

Fig. 10. Experimental results for the temporal stability of the com-
pact 3D printed DH microscope. Histogram of standard deviations of
fluctuations of 128 × 128 pixels recorded at a frame rate of 30 Hz
without mechanical isolation. The inset shows the mean of standard
deviations, which was 0.24 nm.

Table 2. Comparison of Cell Classification Results for
Data Acquired Using the Setup in Fig. 1 for CMOS andCell
Phone Sensorsa

Random Forest (RF)
Classifier (CMOS Data)

Random Forest (RF)
Classifier (Cell Phone Data)

PP PN PP PN

TP 75 5 TP 75 5
TN 1 49 TN 3 47

aRandom forest (RF) classifier was used. TP: true positive, TN: true negative,
PP: predicted positive, PN: predicted negative.
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cameras have the potential to be used as an alternative to CMOS
sensors. Thus, the 3D printed DHMIC prototype can
be used with common mobile devices for hologram recording,
and they produce good classification results (see Table 2). There
are many advantages to using mobile devices in microscopy [32].
Using the field-portable prototype presented here, it is possible
to record and send digital holograms to a computational
device located remotely, via the internet for data analysis.
This becomes important when the personnel handling the
prototype lack the skills to process the acquired data. We
believe we can further reduce the cost of the proposed device
by incorporating more 3D printed components to replace
mechanical components. In addition, inexpensive laser diodes
and CMOS sensors, such as webcams, can be used in the setup.
We envision that by making these changes, the whole setup will
cost between 50–100 USD. Mass-producing the system can fur-
ther reduce the cost. Our future work aims to study dynamic cell
parameters, such as cell membrane vibration amplitude and vi-
bration frequency, using the cell phone sensor for human red
blood cells and diagnosis diseases using the compact setups
shown in Figs. 3 and 4.

Funding. National Science Foundation (NSF) (ECCS
1545687).

Acknowledgment. We wish to acknowledge Nikon
Research Corp. of America for their support of this project.
B. Javidi acknowledges National Science Foundation (NSF)
under grant ECCS 1545687. Adam Markman would like to
acknowledge FEI and GE for their support. Satoru Komatsu
would like to acknowledge Canon Inc. for their support.

REFERENCES
1. P. Memmolo, V. Bianco, F. Merola, L. Miccio, M. Paturzo, and P.

Ferraro, “Breakthroughs in photonics 2013: holographic imaging,”
IEEE Photon. J. 6, 701106 (2014).

2. P. Memmolo, A. Finizio, M. Paturzo, L. Miccio, and P. Ferraro,
“Twin-beams digital holography for 3D tracking and quantitative
phase-contrast microscopy in microfluidics,” Opt. Express 19, 25833–
25842 (2011).

3. L. Miao, K. Nitta, O. Matoba, and Y. Awatsuji, “Parallel phase-shifting
digital holography with adaptive function using phase-mode spatial
light modulator,” Appl. Opt. 51, 2633–2637 (2012).

4. B. Javidi and E. Tajahuerce, “Three-dimensional object recognition by
use of digital holography,” Opt. Lett. 25, 610–612 (2000).

5. D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer,
“A digital holography technique for generating beams with arbitrary
polarization and shape,” Proc. SPIE 8550, 85503Q (2012).

6. F. Dubois, L. Joannes, and J. C. Legros, “Improved three-dimensional
imaging with digital holography microscope using a partial spatial
coherent source,” Appl. Opt. 38, 7085–7094 (1999).

7. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram
Recording, Numerical Reconstruction and Related Techniques
(Springer, 2005).

8. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital
Methods (Wiley, 2004).

9. G. Popescu, Quantitative Phase Imaging of Cells and Tissues
(McGraw Hill, 2011).

10. P. Marquet, B. Rappaz, E. Cuche, T. Colomb, Y. Emery, C.
Depeursinge, and P. Magistretti, “Digital holography microscopy: a

non-invasive contrast imaging technique allowing quantitative visuali-
zation of living cells,” Opt. Lett. 30, 468–470 (2005).

11. A. Doblas, E. Sánchez-Ortiga, M. Martínez-Corral, G. Saavedra,
and J. Garcia-Sucerquia, “Accurate single-shot quantitative phase
imaging of biological specimens with telecentric digital holographic
microscopy,” J. Biomed. Opt. 19, 046022 (2014).

12. U. Gopinathan, G. Pedrini, B. Javidi, and W. Osten, “Lensless 3D
digital holographic microscopic imaging at vacuum UV wavelength,”
J. Display Technol. 6, 479–483 (2010).

13. W. Osten, A. Faridian, P. Gao, K. Körner, D. Naik, G. Pedrini, A. K.
Singh, M. Takeda, and M. Wilke, “Recent advances in digital holog-
raphy [Invited],” Appl. Opt. 53, G44–G63 (2014).

14. D. B. Murphy, Fundamentals of Light Microscopy and Electronic
Imaging (Wiley, 2001).

15. F. Zernike, “Phase contrast, a new method for the microscopic obser-
vation of transparent objects,” Physica 9, 686–698 (1942).

16. B. Javidi, I. Moon, S. K. Yeom, and E. Carapezza, “Three-dimensional
imaging and recognition of microorganism using single-exposure
on-line (SEOL) digital holography,” Opt. Express 13, 4492–4506
(2005).

17. I. Moon and B. Javidi, “Shape tolerant three-dimensional recognition
of biological microorganisms using digital holography,” Opt. Express
13, 9612–9622 (2005).

18. I. Moon, A. Anand, M. Cruz, and B. Javidi, “Identification of malaria
infected red blood cells via digital shearing interferometry and statis-
tical inference,” IEEE Photonics J. 5, 6900207 (2013).

19. A. Anand, V. K. Chhaniwal, and B. Javidi, “Imaging embryonic stem
cell dynamics using quantitative 3-D digital holographic microscopy,”
IEEE Photonics J. 3, 546–554 (2011).

20. D. Shin, M. Daneshpanah, A. Anand, and B. Javidi, “Optofluidic
system for three-dimensional sensing and identification of micro-
organisms with digital holographic microscopy,” Opt. Lett. 35, 4066–
4068 (2010).

21. A. S. Singh, A. Anand, R. A. Leitgeb, and B. Javidi, “Lateral shearing
digital holographic imaging of small biological specimens,” Opt.
Express 20, 23617–23622 (2012).

22. V. K. Chhaniwal, A. S. G. Singh, R. A. Leitgeb, B. Javidi, and A.
Anand, “Quantitative phase-contrast imaging with compact digital
holographic microscope employing Lloyd’s mirror,” Opt. Lett. 37,
5127–5129 (2012).

23. A. Anand, A. Faridian, V. K. Hhaniwal, S. Mahajan, V. Trivedi, S. K.
Dubey, G. Pedrini, W. Osten, and B. Javidi, “Single beam Fourier
transform digital holographic quantitative phase microscopy,” Appl.
Phys. Lett. 104, 103705 (2014).

24. K. B. Seo, B. M. Kim, and E. S. Kim, “Digital holographic microscopy
based on a modified lateral shearing interferometer for three-
dimensional visual inspection of nanoscale defects on transparent
objects,” Nanoscale Res. Lett. 9, 471 (2014).

25. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho,
and H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt.
45, 836–850 (2006).

26. R. P. Shukla and D. Malacara, “Some applications of the Murty inter-
ferometer: a review,” Opt. Lasers Eng. 26, 1–42 (1997).

27. D. Malacara, “Testing of optical surfaces,” Ph.D. dissertation, Institute
of Optics (University of Rochester, 1965).

28. R. M. Goldstein, H. A. Zebker, and C. L. Werner, “Satellite radar
interferometry: two-dimensional phase unwrapping,” Radio Sci. 23,
713–720 (1988).

29. A. Anand, V. K. Chhaniwal, N. R. Patel, and B. Javidi, “Automatic iden-
tification of malaria-infected RBC with digital holographic microscopy
using correlation algorithms,” IEEE Photon. J. 4, 1456–1464 (2012).

30. Y. Kim, H. Shim, K. Kim, H. Park, S. Jang, and Y. Park, “Profiling indi-
vidual human red blood cells using common-path diffraction optical
tomography,” Sci. Rep. 4, 6659 (2014).

31. L. Breiman, “Random forests,” Mach. Learn. 45, 5–32 (2001).
32. J. C. Contreras-Naranjo, Q. Wei, and A. Ozcan, “Mobile phone based

microscopy, sensing, and diagnostics,” IEEE J. Sel. Top. Quantum
Electron. 22, 392–405 (2016).

Research Article Vol. 56, No. 9 / March 20 2017 / Applied Optics D133


	XML ID funding

