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Mid-Wave Infrared 3D Integral Imaging
at Long Range

Daniel LeMaster, Barry Karch, and Bahram Javidi, Fellow, [EEE

Abstract—Integral imaging is an established method for pas-
sive three-dimensional (3D) image formation, visualization, and
ranging. The applications of integral imaging include significantly
improved scene segmentation and the ability to visualize occluded
objects. Past demonstrations of this technique have been mainly
conducted over short ranges achievable in the laboratory. In this
paper, we demonstrate 3D computational integral imaging for
ranges out to 2 km using multiple looks from a single moving
mid-wave infrared (MWIR) imager. We also demonstrate 3D
visualization of occluded objects at ranges over 200 m. To our
knowledge, this paper is the first such demonstration at these
ranges and the first example of this technique using a mid wave IR
imaging system. In addition to presenting results, we also outline
our new approach for overcoming the technical challenges unique
to long range applications of integral imaging. Future applications
of long range 3D integral imaging may include aerospace, search
and rescue, satellite 3D imaging, etc.

Index Terms—Computational integral imaging (CII), infrared
imaging, passive 3-D imaging.

I. INTRODUCTION

HERE is great interest in three-dimensional (3D) imaging
for applications such as 3D TV, biomedical imaging, en-
tertainment, computer vision, robotics, and defense [1]-[18].
Integral imaging [7] is a 3D passive sensing and visualization
technique that can be applied to these problems. In this method,
multiple 2D images (elemental images) with different perspec-
tives are captured through a lens or camera array and then vi-
sualized through optical or computer processing. For 3D op-
tical display, this approach provides full parallax (horizontal and
vertical), continuous viewing points, and no visual fatigue. In
addition, it does not require special glasses to observe the 3D
images. Therefore, it is most likely to be the next generation
3D imaging system. However, there are some challenges to be
solved including low viewing resolution, narrow viewing angle,
and limited depth range. Potential solutions to these problems
have been reported [8]-[13].
In an integral imaging system, there are two separate pro-
cedures for image capture (pickup) and reconstruction of 3D
objects. In the pickup stage, multiple 2D elemental images are
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Fig. 1. Principle of integral imaging. (a) Image pickup. (b) 3D optical display.

recorded through the lens or camera array. Each lens encodes
3D object information into 2D elemental images. Thus, many
2D elemental images with different perspectives record the di-
rection and intensity of rays coming from the 3D object through
the lens (or camera) array, as depicted in Fig. 1(a).

For optical reconstruction of the 3D scene, a 2D display de-
vice such as a liquid crystal display (LCD) projects the ele-
mental images onto the focal plane of the display lens array as
shown in Fig. 1(b). Each 2D elemental image is optically trans-
mitted by its corresponding lens back into 3D space. The overlap
of all transmitted elemental images creates local light distribu-
tions similar to the original object of interest. As a result, an
observer can see a real 3D image with full parallax and contin-
uous viewing points.

In this paper, we use synthetic aperture integral imaging and
computational reconstruction to demonstrate 3D visualization
of objects and 3D imaging through obscuration over very long
distances compared to anything else published to date. We
demonstrate 3D integral imaging at ranges up to 2 km. Addi-
tionally, we demonstrate that this technique readily transfers
to infrared imaging sensors in the 3—5 gm [mid-wave infrared
(MWIR)] transmission band. In Section II, we describe our
methods for data collection in the pick-up stage of integral
imaging. Sections III and IV describe our experiments in ob-
scuration penetration and passive ranging. The paper concludes
with a summary of this work in Section V.

II. SYNTHETIC APERTURE INTEGRAL IMAGING AND
COMPUTATIONAL RECONSTRUCTION

We begin by presenting a short overview of computational
reconstruction of integral imaging. The 3D reconstruction
of scene is achieved numerically by simulating the optical
back-projection of the multiple 2D images in computers. In-
trinsically, the resolution of each elemental image is limited
by three parameters: pixel size, lenslet point spread function,
and lenslet depth of focus. However, integral imaging can also
be performed in either a synthetic aperture mode or with an
array of image sensors in which well corrected optics record

1551-319X/$31.00 © 2013 IEEE
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Fig. 2. 3D integral imaging sensing and reconstruction. (a) Scene capture
process. (b) 3D reconstruction of the scene.

each perspective image on a full size imaging sensor [3],
[19], [20]. Since the size of such an array quickly becomes a
major concern, a single high resolution 2D image sensor can
alternatively scan the aperture and capture intermittent images
over a large area. This approach is known as synthetic aperture
integral imaging (SAII) and overcomes some of the limitations
of traditional lenslet-based integral imaging systems.

As illustrated in Fig. 2(a), a camera array or moving single
camera is used to acquire the elemental images from slightly dif-
ferent perspectives. 3D images can be reconstructed by a variety
of computational reconstruction algorithms [1], [3], [19]. Our
procedure of computational reconstruction is shown in Fig. 2(b).
Each elemental image is projected on the desired reconstruction
plane and overlaps with all other back-projected elemental im-
ages. The computational reconstruction algorithm is

R(z,y,2)

K—-1L-1
1 N, xp N, xp
= — E U_k . _l Y
O(way)zz “(T cox MY nyM)

k=0 1=0
(1)

where R(z,y, z) represents the intensity of the reconstructed
3D image at depth z = d, = and y are the index of pixels, Fy;
represents the intensity of the £th column and /th row elemental
image, N,, IV, are the total number of pixels for each elemental
image, M is the magnification factor and equals z/f, f is the
focal length, p is the pitch between image sensors, ¢,, ¢, are
the size of the image sensor, O(z, ) is the overlapping number
matrix.
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Fig. 3. Example of elemental image with range annotations.

Fig. 4. Tests were conducted from the Sensors Directorate tower and camera
rail.

III. FIELD COLLECTION

Field experiments were conducted from the 12th floor of the
AFRL tower located at Wright Patterson AFB. All elemental
images were collected with a Lockheed Martin Santa Barbara
Focalplane AuraSR MWIR imager with a StingRay Optics 120
mm f /2.3 lens. This lens provides very low distortion over its
9.51°x9.51° field-of-view.

A representative elemental image is shown in Fig. 3. This
west-facing view includes a historical hangar complex with
flight line and the National Museum of the United States
Air Force. The figure is annotated with measured ranges for a
number of prominent objects in the scene. Range measurements
were made with a Riegl Lasertape FG21 laser range finder. In
each case, the most reliable measurements came from ranging
the tower from the target. The importance of this distinction
will become clear when these ranges are used to compare
results later in Section IV.

Knowledge of camera position and orientation in the pickup
stage of integral imaging is critical to all subsequent recon-
struction tasks. For this reason, the AuraSR camera was trans-
lated between imaging positions using a high accuracy rail ap-
paratus originally designed for synthetic aperture radar exper-
iments (see Fig. 4). Camera position on the rail can be tightly
controlled over a 9 m horizontal path resulting in only minor
residual position and pointing errors. Fig. 5 shows these residual
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Fig. 5. Estimated residual camera positioning errors for two independent tests.
“tgt” denotes target.

errors as estimated from known target ranges in two indepen-
dent sets of elemental images.

This correction was used for fine camera position adjustments
in the results that are shown below. It should be emphasized
that the correction does not represent some target specific tuning
of the results; a single set of translation correction parameters
was used throughout each experiment to good effect. The in-
terested reader may also refer to [21] for an alternative camera
positioning correction method that does not require a reference
target.

IV. EXPERIMENT 1—IMAGING THROUGH OBCURATIONS

This first experiment demonstrates the use of computational
integral imaging (CII) for profilimetry and, more importantly,
imaging through obscurations. The independently measured
sensor-to-target range is 228 m. To the best of our knowledge,
this is the longest range demonstration of integral imaging for
obscuration penetration available in the literature.

A complete explanation of CII reconstruction can be found in
[3]. For the one-dimensional pick-up array used in these exper-
iments, the image in the reconstruction plane at range z is given
by

N
1 Ip
Rz,y,2) = ——— Eq' r— — g 7
(z,9,%) 0 p2) ;:1 , (JL D +miy+n )
()

where F; is the ¢th elemental image out of IV total images, f
is the camera focal length, D is the camera pixel pitch, p is
the separation distance between image sensors, and (. n;) are
the fine position correction adjustments discussed in Section III.
Both (z,y) and (m;, n,;) are addressed in image pixel coordi-
nates. O is the overlapping image number matrix, e.g., if three
elemental images overlap at point (z. y, z) then O(z, y, z) = 3.
Equation (2) should be interpreted as a horizontal sliding and
summing of the elemental images according to their relative
perspectives of the scene at range z. Visually, the effect of R
is that targets in or near the reconstruction plane are sharply de-
fined while those at different ranges are blurred out. Note that

547

Fig. 7. Results of the obscuration penetration experiment.

this blurring has nothing to do with camera focus. Focus is held
constant across all elemental images.

Equation (2) is applied to the problem of obscuration penetra-
tion in the following scenario. The camera parameters are focal
length f = 120 mm, and pixel size = 19.5 pm. The horizontal
and vertical position correction factors are as shown in Fig. 5.
As shown in Fig. 6, a civilian vehicle is partially obscured in a
tree line. This image is also one of the N = 8 elemental images
used in the CII reconstruction. It should be clear that much of
the detail on this vehicle cannot be recovered from a single el-
emental image alone. The same is true for the remaining ele-
mental images spread out over a horizontal pick-up range of 7 m.
The full pick-up range could not be used due to field-of-view
limitations.

The obscuration penetration effect is shown by reconstructing
this scene at two ranges. Fig. 7 shows the trees in front of the
vehicle reconstructed at a range of z = 213 m and the vehicle
reconstructed at a range of z = 237 m.

The vehicle reconstruction is in a plane 9 m deeper than the
ground truth sensor-to-target range. This difference could be
due to errors in either the reconstruction or uncertainty in the
ground truth measurements, but another interesting possibility
exists as well. The decision to use a 237 m target reconstruction
range was based on the visual appearance of the target. It may
be that this reconstruction is most appealing because the fore-
ground trees are extensively blurred out at this range, not be-
cause the target is in sharp relief. This hypothesis may be tested
through future measurements involving more elemental images
including vertical and horizontal camera positions.

The CII code used in the experiment was implemented in
MATLAB. Total runtime for full scene reconstruction at any
given range is 0.28 s. This is adequate for the present purposes
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Fig. 8. Graphical representation of the CII search procedure at three ranges.

but more efficient implementations are possible and inspection
of (2) shows that this process is easily parallelizable for addi-
tional speed gains.

V. EXPERIMENT 2—RANGE ESTIMATION AND 3-D SCENE
RECONSTRUCTION

The second goal of this research is to test the range estimation
capability of computational integral imaging. All camera pa-
rameters are the same as in Experiment 1 except for the overall
camera depression angle. While it is possible for a sensor op-
erator to estimate range visually using CII, this estimate would
be somewhat subjective. Instead, we implemented a procedure
to automatically search for a reference template of each target
in CII 3D space. The template data is taken from the (arbitrarily
selected) reference elemental image and the search function is
defined in terms of the sum squared error between the template
image and like-sized image chips from R(z,y, z) as defined in
(1).

The geometry of the reconstruction algorithm allows for
strong spatial constraints to be placed on the required recon-
struction region and on the search function. For this particular
experimental setup, there is no (intentional) motion in the
1, 1.e., vertical, direction. Consequently, the contributions of
R(z.,y, z) outside of the template chip in the y-direction may
be ignored. Implementing this constraint speeds up the range
estimation algorithm significantly. Additionally, the projected
location of the template image at a given range may be cal-
culated in advance, thereby restricting the search to a specific
region in the reconstruction plane. The location of this region
will change at each range but this change is deterministic.
This second constraint also speeds up the algorithm but, more
importantly, it eliminates local minima in the search space that
can stall otherwise applicable search algorithms. By identifying
and applying these strong constraints, we were able to use
fminbnd (a canned minimization function in MATLAB) to find
the estimated range, 2’, with minimum sum squared error be-
tween the template, T'(, i), and constrained CII reconstructed
image, Re(x,y, 2)

# = argmin {Z ST (2.y) - Re (.. z>]2} G

The search algorithm and constraints are demonstrated graph-
ically in Fig. 8 using a laboratory CII dataset and three recon-
structed ranges (top—range undershoot; middle—range over-
shoot; bottom—correct range). The y-direction constraint is im-
plemented as a simple crop of the image along rows that are
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Fig. 9. Overview of the range search algorithm.

TABLE I
ESTIMATED RANGE RESULTS USING CII

Measured (m) Estimated(m) A (m) MLR (m)
666 710 -44 8
969 1015 -46 17
1429 1443 -14 37
2241 2065 176 91

not consistent with the template chip. The template chip, in this
case, contains the image of a tilted 2” blackbody source. The
second constraint is shown as the red box over the CII image
at each range. The spatial attributes of this red box change with
each estimated range but this change is predictable because the
position of the template chip in its reference elemental image
is known. Only the sum squared error inside of the red box
boundary is considered in the range estimation problem.

In integral imaging, longitudinal resolution depends on many
system parameters including detector size, total parallax, focal
length, and so on. Minimum longitudinal resolution (MLR) is
typically defined in terms of a minimum 2z distance such that
all the elemental images are focused on the same plane and not
overlapped [25]. However, when 2 >> Piyax (Where Py, is the
parallax or the largest possible separation between elemental
images) the elemental images always have significant overlap.
Assuming detector limited (i.e., undersampled) imaging condi-
tions; a useful estimate of MLR in this case is

dz?
Az >

) 4)
pmax

which is based on the requirements that a one pixel shift be-
tween elemental images is necessary to detect a change in depth
and that z > f. The longitudinal resolution can be improved
by increasing the parallax and/or reducing the pixel size. Also,
it depends on the camera geometry. The limitation of the inte-
gral imaging in terms of resolution, parallax, and camera pa-
rameters are presented in [24] and [25]. While there are active
sensing approaches such as LADAR that can measure range, the
integral imaging approach presented here has the advantages of
simplicity and passive sensing. [26] discusses both LADAR ap-
proach and integral imaging for ranging. MRL values are pre-
sented below to provide a reference by which the estimated
range errors can be compared.

An overview of our search algorithm is shown in Fig. 9. Re-
sults using this search algorithm for four targets at known ranges
are shown in Table I. Total processing time was 1.25 s (0.312
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s per target) using non-optimized code. The A values shown in
the table represent the difference between the laser rangefinder
measured target range and the CII estimated range. In this way,
a negative A value indicates that the target range was overesti-
mated. MLR is, by definition, unsigned.

The resulting range errors are comparable to the MLR though
clearly there is room for improvement. There are several pos-
sible reasons why the MLR was not achieved. First and most
important, there may be pointing error that is not well modeled
by the fine position correction adjustments [see eq. (1)] and/or
there may be random error in the estimation of the adjustments
themselves. Second, the imagery is undersampled and there-
fore each elemental image is not an exact translated replica of
the others. Consequently, the objective function in (3) might be
minimized at the wrong z due to aliasing along a sharp edge or
other high contrast feature. Noise does not appear to be a con-
tributing factor in this case though perhaps it would be under
low signal conditions.

In several cases, this performance is better than what can
be achieved with a laser rangefinder because of environmental
conditions and target geometry. Our experience collecting
ground truth for this project with a Riegl Lasertape FG21 laser
rangefinder supports this claim. When viewed from the tower,
the trees in front of the roof (bottom right) reflect more laser
energy than the roof itself. Attempts to range this roof from
the tower yielded results that were short by several hundred
meters. The tree at true range 1429 m is also not a well formed
target for a laser rangefinder for similar reasons. This is why the
measured ranges shown in Section III were taken by ranging
the tower from the target location: the tower is angularly larger
and relatively unobstructed from or nearby each target site.

The target templates in these range estimation tests were hand
selected but adequate results can also be achieved with an au-
tomatic image segmentation algorithm. Segmenting a grayscale
image with many touching objects is another worthy research
topic in and of itself. We used marker-controlled watershed seg-
mentation! in order to test our CII ranging algorithm but there
are many other viable approaches. Segmentation algorithm run-
time was 3.6 s.

Each of these segments was ranged using the algorithm de-
scribed above. The resulting range map is shown in Fig. 10.
Total runtime was 59.00 s. While the overall results are good,
two prominent segment types defeated the ranging algorithm:
tree segments and periodic structure segments. Clumps of trees,
especially those near the bottom of the image, may be difficult
for the ranging algorithm because each segment contains sig-
nificant 3D content. If this conjecture is true, then further seg-
mentation (or perhaps more intelligent segmentation) may re-
duce these errors. Additionally, the low contrast and periodic
structure of the museum hanger roof (near the upper right of
the image) may have caused the search algorithm to fail by pro-
viding multiple matches to the segment. Assuming this is the
case, a combination of vertically and horizontally dispersed el-
emental images may help clear up this ambiguity.

Qualitatively, it is easier to assess this range map using 3D
projection as shown in Fig. 11. Most of the anomalous segments

[Online]. Available: http://www.mathworks.com/products/image/demos.
html?file=/products/demos/shipping/images/ipexwatershed.html
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Fig. 10. Range map using automatic segmentation.

Fig. 11. Scene projection from computational integral imaging.

have been blacked out to maintain perspective. Several small
remaining range anomalies are present, especially in the left half
of the image. The museum hanger roof is also conspicuously
missing for the reasons described above. Otherwise, the quality
of the projection is surprisingly good.

The interested reader may also refer to [22] for a completely
unrelated alternative for range mapping using integral imaging.
In this work, the authors demonstrate their approach using 121
elemental images with 5 mm spacing for targets with ranges
out to 52 cm. We leave it to future work to determine if their
approach can be translated to the sparse sampling, long range
scenario presented here.

VI. CONCLUSION

In this paper, we describe our experiments in obscuration
penetration and ranging using passive computational integral
imaging (CII) at distances that greatly exceed anything pub-
lished previously. The two key requirements for successful CII
are control over camera pose and the ability to measure or esti-
mate the relative change in camera position between elemental
images. We were able to build elemental image arrays of up
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to 9 m by employing rail guided positioning and fine correc-
tions estimated from the target scene. In doing so, we were able
to successfully perform obscuration penetration imaging from
over 200 m and passive ranging at over 2000 m. To the best of
our knowledge, these are by far the longest range examples of
this technique available in the literature (see for instance, [21]
and [22] for more typical ranges). In order to achieve these re-
sults, we also devised an automatic ranging algorithm based on
fast 3-D template matching. In future research, this approach
will be compared to other processing options in terms of speed
and accuracy.
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