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ABSTRACT | Multidimensional optical imaging systems 
for information processing and visualization technolo-
gies have numerous applications in fields such as manu-
facturing, medical sciences, entertainment, robotics, sur-
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Multidimensional Optical 
Sensing and Imaging System 
(MOSIS): From Macroscales to 
Microscales
This review paper describes a passive multidimensional optical sensing and imaging 
system (MOSIS), which can be used for 3-D visualization, seeing through 
obscurations, material inspection, 3-D endoscopy, and 3-D object recognition from 
microscales to long-range imaging. The system utilizes time and space multiplexing, 
polarimetric, temporal, photon flux, and multispectral information to reconstruct 
multidimensionally integrated scenes.
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veillance, and defense. Among different 3-D imaging 
methods, integral imaging is a promising multiperspective  
sensing and display technique. Compared with other 3-D imag-
ing techniques, integral imaging can capture a scene using an 
incoherent light source and generate real 3-D images for obser-
vation without any special viewing devices. This review paper 
describes passive multidimensional imaging systems combined 
with different integral imaging configurations. One example is 
the integral-imaging-based multidimensional optical sensing 
and imaging system (MOSIS), which can be used for 3-D visu-
alization, seeing through obscurations, material inspection, and 
object recognition from microscales to long-range imaging. This 
system utilizes many degrees of freedom such as time and space 
multiplexing, depth information, polarimetric, temporal, photon 
flux and multispectral information based on integral imaging to 
record and reconstruct the multidimensionally integrated scene. 
Image fusion may be used to integrate the multidimensional 
images obtained by polarimetric sensors, multispectral cam-
eras, and various multiplexing techniques. The multidimensional 
images contain substantially more information compared with 
2-D images or conventional 3-D images. In addition, we present 
recent progress and applications of 3-D integral imaging includ-
ing human gesture recognition in the time domain, depth estima-
tion, mid-wave-infrared photon counting, 3-D polarimetric imag-
ing for object shape and material identification, dynamic integral 
imaging implemented with liquid-crystal devices, and 3-D endos-
copy for healthcare applications.
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I .  IN TRODUCTION

There have been significant technological advancements in 
sensors, devices, materials, algorithms, and computational 
hardware. Therefore, sensing and visualization capabilities 
applied to real world objects have improved extensively. In 
recent decades, 3-D imaging technology has received interest 
from many research groups. Instead of conventional 2-D sens-
ing techniques, which record the intensity of the scene, passive 
3-D imaging also includes depth and directional information. 
Many techniques for 3-D imaging have been proposed, such as 
holography and interferometry [1],  [2], two-view based stere-
oscopy [3], [4], and multi-view techniques for autostereoscopic 
3-D imaging [5], [6], to cite a few.

Integral imaging [7] is an autostereoscopic 3-D sensing and 
imaging technique, which provides true 3-D images with full 
parallax and quasi-continuous viewing angles [8]. In addition, 
integral imaging can work well for long-range objects [9]. In 
contrast, some other 3-D sensing techniques, such as the time-
of-flight camera [10] or structured light techniques [11], [12], 
may not work well for long-range objects. Integral imaging is a 
promising technique that has been used in various fields, such 
as 3-D sensing [13], 3-D displays [14]–[17], holographic display 
[18], 3-D imaging of objects in turbid water [19], 3-D track-
ing [20] and 3-D target detection and recognition [21], [22], 
photon counting 3-D sensing and visualization [23]–[25], 3-D 
microscopy [26]–[31] and endoscopy for microscale 3-D imag-
ing and display [32], [33], head tracking 3-D display [34], 3-D 
augmented reality [35]–[38], to cite a few.

Originally developed for space-based imaging [39], mul-
tispectral imaging captures the information corresponding 
to specific wavelengths of light. The spectrum for an imag-
ing system can be extended from the visible range to the 
near-infrared (NIR) range, mid-wave-infrared (MIR) range, 
or long-wave-infrared (LWIR) range. Applications of mul-
tispectral imaging range from remote sensing [40]–[42] to 
medical imaging [43], to name a few.

One of the fundamental properties of light is its state of 
polarization [44], [45]. From this information, we may obtain 
optical and physical properties of materials using noninvasive 
optical probes [46], [47]. This information can be helpful for 
material inspection and classification in manufacturing, remote 
sensing and security applications [48]–[50]. The polarization 
state of light allows the sensor to capture information about 
an object’s surface material, such as birefringence, photoelas-
tic effect, etc. When this information is combined with other 
sensor data, the overall effectiveness of a multidimensional 
imaging system, such as the integral-imaging-based multidi-
mensional optical sensing and imaging system (MOSIS) [51], is 
enhanced. In MOSIS, polarimetric characteristics from a real-
world scene are extracted from a polarimetric imaging system.

Integrating features from multidimensional and multi-
modal imaging, that is, 3-D imaging, multispectral imaging 
and polarization imaging, etc., provides unique information 
about a scene. In this paper, we present an overview of some 
recent work on multidimensional sensing and integrated vis-
ualization with 3-D integral imaging technology. In addition, 
new work on using MOSIS 2.0 for 3-D object shape, mate-
rial inspection, and recognition, such that similar objects 
with different materials can be discriminated, is presented. 
To the best of our knowledge, this is the first time that all 
of these degrees of freedom are integrated in a passive 3-D 
integral imaging system. This paper is organized as follows: 
the original concept of MOSIS [51] is first reviewed in Section 
II, followed by the principle and recent progress of the inte-
gral imaging technique in Section III. Section IV presents the 
development of the 3-D polarimetric integral imaging sensing 
and visualization. Integral imaging techniques in the infra-
red domain are presented in Section V. Three-dimensional 
human gesture recognition using integral imaging videos is 
discussed in Section VI, and recent progress of MOSIS 2.0 is 
given in Section VII. Section VIII presents a brief overview of 
MOSIS in microscales for medical applications and dynamic 
integral imaging systems with time multiplexing imple-
mented with liquid crystal devices. Conclusions are given in 
Section IX. Progress in these topics has grown substantially in 
the recent years, and therefore it is difficult to give a complete 
overview of all the reported work. Thus, we apologize if some 
relevant work has been omitted in this review.

II .  MU LTIDIMENSIONA L OP TIC A L 
SENSING A ND IM AGING SYSTEMS 
(MOSIS)

In this section, the integral-imaging-based MOSIS is reviewed. 
MOSIS is an extension of the conventional 3-D integral imaging 
technique to incorporate multimodality into image sensing and 
reconstruction. Additional information obtained by the system 
can be further used for object recognition, material inspection 
and integrated 3-D visualization, etc., which can significantly 
enhance the amount of information extracted from a scene.

The concept of MOSIS [51] is to use different degrees of 
freedom from photons of a scene, such as polarization, angu-
lar information, spectral, time variation, etc., to reveal new 
information of the scene. It is a more advanced imaging sen-
sor and visualization system compared with a conventional 
integral imaging system. Although some experiments can be 
done with different imaging setups, MOSIS can increase the 
amount of information extracted from the scene due to the 
multimodal and multidimensional measurements. As shown 
in Fig. 1(a), MOSIS can record a scene with separate sensors 
corresponding to various optical properties. In one modal-
ity, by moving a lenslet array with the moving array lenslet 
technique (MALT) [52] within a period of the lenslet, time 
multiplexed integral imaging pickup with an increased sam-
pling rate can be obtained to improve 3-D visualization.
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In addition, the image sensor can capture multispectral 
imaging and polarized information with specific filters and opti-
cal components. For polarimetric 3-D sensing, an object is first 
illuminated using linearly polarized light. The light reflected 
from the object’s surface passes through the lenslet array, an 
imaging lens, and a rotating linear analyzer. The light then forms 
an array of elemental images, which is recorded by an image sen-
sor. The reflected light’s polarimetric information is determined 
through the Jones vector by using the rotation linear polarizer 
analyzer [46]. To optically visualize the polarimetric object, the 
polarization-selected elemental images are displayed in a spa-
tial light modulator (SLM) with two quarter-wave plates. The 
multi-wavelength information in the visible and infrared range, 
including NIR, can be captured using a specific light source and 
a series of band-pass filters added in front of the image sensors.

The multidimensional data needs to be integrated for 
visualization. MOSIS may use wavelet decomposition to fuse 
the elemental images. The elemental images are decomposed 
into various channels guided by their local frequency content 
[53]–[55]. Fig. 1(b) depicts an example of the image fusion pro-
cess with a three-level wavelet decomposition. A 2-D wavelet 
decomposition measures intensity fluctuations in the elemen-
tal images, along the horizontal, vertical and diagonal directions 
using wavelet filters. This is achieved by applying a low-pass or a 
high-pass filter from a wavelet family to an image’s rows. After 
filtering, the image columns are down sampled by a factor of 2 
such that only the even indexed columns are kept. A low-pass 
or a high-pass filter, from the wavelet family previously used, is 

then applied to the columns of the previously filtered images. 
This is then followed by down sampling the rows by a factor of 
2 such that only the even indexed rows are kept. Three of the 
resulting images are the   i   th   level decomposition corresponding 
to the image’s frequency information in the horizontal, vertical, 
or diagonal direction. The fourth image can then be inputted 
into the wavelet decomposition process producing another set 
of ( i + 1 )      th   decomposition. For image fusion, the   j   th   decompo-
sition level of the image and another image can be combined 
using image fusion rules, such as a weighted sum of the two 
levels. After fusion, an inverse wavelet transform is applied to 
obtain the fused elemental images.

III .  PR INCIPLE A ND R ECEN T 
PROGR ESS OF IN TEGR A L IM AGING

The original concept of integral imaging was proposed by 
Lippmann in 1908 [7] and called integral photography.  
The principle of this technique is to record a 3-D scene from 
multiple perspectives by using a lenslet array and a 2-D record-
ing medium, such as film [56]–[58], since optoelectronic 
image sensors were not available at the time. Thanks to the 
rapid technological improvement in optoelectronic sensors, 
materials and devices, such as CCD and CMOS cameras, LC 
display screens, and the commercialization of computers, inte-
gral imaging has been revived in the recent decades [59]–[63]. 
There are two procedures in a typical integral imaging system 
for 3-D information acquisition and visualization, known as the 
pickup and reconstruction stages, respectively.

A. Pickup Stage of Integral Imaging

1) Lenslet Based Pickup Stage: Fig. 2(a) shows the charac-
teristics of the integral imaging pickup stage. A lenslet array is 

Fig. 1. (a) Overview of  MOSIS. The proposed system fuses the 
polarimetric information, multispectral sensing, and multidimensional 
visualization with integral imaging. MOSIS may use the moving array 
lenslet technique (MALT) to improve resolution. (b) Elemental images 
fusion with wavelet decomposition in MOSIS [51].

Fig. 2. Principle of integral imaging. (a) Pickup stage, and (b) 
reconstruction stage. Each object point in the pickup stage goes 
to a different pixel position in the 2-D sensor. During the 3-D 
reconstruction, those contributions make it possible for 3-D 
visualization of the object.



Javidi et al . :  MOSIS: From Macroscales to Microscales

Vol. 105, No. 5, May 2017 |  Proceedings of the IEEE 853

placed in front of a 2-D image sensor. Light scattered by the 3-D 
scene surface passes through each lenslet and is then recorded 
by the sensor. Compared to the single lens imaging system, inte-
gral imaging obtains multiple 2-D images (named as elemental 
images) of the 3-D scene corresponding to each lenslet with dif-
ferent perspectives. Moreover, the image sensor, known as an 
elemental image array, captures both intensity and directional 
information of the light rays emitted by the scene.

The resolution of the captured elemental images may 
be limited by the configuration of the lenslet array and 
the pixel size of the sensor. The moving array lenslet tech-
nique was proposed in [52] to improve the resolution of 
the elemental images. There are many computational 
super resolution methods, but the moving array lenslet 
technique naturally increases the number of samples of 
the optical field which is available to improve the spatial 
sampling. By moving the lenslet array in the integral imag-
ing pickup stage, the upper resolution limitation given by 
the Nyquist sampling theorem can be overcome. The par-
allax barriers (the dashed lines in Fig. 2) are needed on 
the image forming side of the lenslet array. Each of the 
captured elemental images corresponds to a specific lens-
let and should only record the light information passing 
through it. If an elemental image records the light from the 
adjacent lenslet, the crosstalk phenomenon will happen on 
the elemental image and the 3-D display quality may be 
substantially degraded [64].

2) Synthetic Aperture Integral Imaging Pickup Stage: 
Elemental images with high resolution, large field of view 
and extended depth-of-field can be achieved by using the 
synthetic aperture integral imaging technique [65] with 
the configuration of an array of imaging sensors or a mov-
ing image sensor array (an image sensor with a lens trans-
lated on a 2-D plane). A CCD or CMOS sensor records the 
scene with high resolution images. Furthermore, since the 
image sensor lens parameters (e.g.,  focal length and aper-
ture, etc.) are controllable, synthetic aperture integral 
imaging provides flexibility for specific 3-D sensing require-
ments, which makes it more practical than the lenslet 
based integral imaging pickup technique. Synthetic aper-
ture integral imaging may be implemented using a single 
camera on a moving platform or a camera array. Fig. 3(a)  
shows an example of a synthetic aperture integral imaging 
pickup stage by using a camera array. The period between 
adjacent image sensors, the number of sensors on the hori-
zontal and vertical directions, and the sensor parameters can 
be adjusted in contrast to the conventional lenslet array. Syn-
thetic aperture integral imaging allows the integral imaging 
pickup stage to increase the parallax of the captured images.

3) Axially Distributed Sensing and Flexible Sensing: 
Recently, 3-D sensing techniques based on synthetic aper-
ture integral imaging were modified for the case that the 
image sensor may not be distributed in a planar and regular 
grid configuration. A multi-perspective 3-D imaging archi-
tecture named the axially distributed sensing (ADS) method 
is presented in [66]. For the 3-D sensing process, various 
perspectives of the scene are acquired by either moving the 
sensor along a common optical axis, or the object of inter-
est is translated parallel to the optical axis. This method 
can be used for 3-D information computational extraction 
and reconstruction, since its acquisition capability is not 
uniform over the field of view. To simplify the configura-
tion, elemental images based on the axially distributed  
sensing method are obtained by translating a single camera 
longitudinally along its optical axis as shown in Fig. 3(b).

In [67], a new integral imaging methodology for ran-
domly distributed sensors was proposed assuming no rotation 
amongst the sensors; however, they may be at different x-, 
y- and z-coordinates relative to a reference camera position. 
Similar arrangements can be implemented with ADS.

B. Reconstruction Stage of Integral Imaging

1) Lenslet-Based Optical Display: Fig. 2(b) depicts the con-
cept of the integral imaging optical reconstruction stage. 
By displaying the acquired elemental images on a display 
device (LCD), light from the display device retraces through 
the lenslets and projects the elemental images onto the focal 
plane of the lenslet array. The overlap between all the pro-
jected elemental images converges in the 3-D space to form 
a real 3-D image. Since the observer’s perspective is oppo-
site to the lenslet array, the convex and concave portions of 

Fig. 3. (a) Example of synthetic aperture integral imaging (SAII) 
with a camera array in the pickup stage of integral imaging. A single 
camera on a moving platform may implement synthetic aperture 
integral imaging. (b) Example of a different passive 3-D imaging 
known as the axially distributed sensing (ADS) method, with a 
camera moving along its optical axis. Si are the index of the camera 
positions and  EIi are the corresponding captured elemental images.
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the 3-D image appear reversed for viewers as a pseudoscopic 
3-D image.

In order to convert a pseudoscopic (depth inverted) 3-D 
image to an orthoscopic (correct depth) 3-D image, one solu-
tion is to rotate each elemental image by 180° along its center. 
The 3-D image will form behind the lenslet as a virtual image 
[68]. A more general digital method named smart pseudo-
scopic-to-orthoscopic conversion is presented in [69], [70]. As 
shown in Fig. 4, smart pseudoscopic-to-orthoscopic conver-
sion first performs a simulated display for the captured ele-
mental images on a specific reference plane, then a new set of 
elemental images is generated by synthetic capture through 
a virtual pinhole array. Smart pseudoscopic-to-orthoscopic 
conversion allows for pseudoscopic to orthoscopic trans-
formation of the 3-D image capable of adjusting the display 

Fig. 4. Concept of the smart pseudoscopic-to-orthoscopic 
conversion method.

Fig. 5. Computational volumetric reconstruction of integral 
imaging.

parameters, which makes it a robust approach with various 
applications [34], [71], and [72].

2) Computational Volumetric Reconstruction: Three-
dimensional integral imaging visualization can be accom-
plished by computational volumetric reconstruction [73]–
[75]. Since reconstruction is the inverse process of the 
pickup stage, volume pixels can be reconstructed at arbi-
trary distances from the display plane by computationally 
simulating optical reconstruction based on ray optics. As 
illustrated in Fig. 5, the captured 2-D elemental images are 
inversely mapped using a computationally synthesized vir-
tual pinhole array and superimposed into the object space. 
For a specific reconstruction plane ( z ), the computationally 
reconstructed image  R(x ,  y ;  z ) can be expressed as

 R(x, y; z )  =   1 ______ M × N     ∑ 
i=1

  
M

    ∑ 
 j=1

  
N

  E I   i, j  (x +   
 c  x  i, j 

 ___  r z     , y +   
 c  y  

i, j 
 ___  r z    )     (1)

where  M ,  N  are the number of elemental images in the  x  and  
y  coordinates, EI      i, j   is the intensity of the elemental image in 
the   i   th   column and   j   th   row, (  c  x   

i,  j  ,   c  y  
i,  j  ) represents the position 

of the  (i,   j)   th   image sensor, and   r z   = z / g  is the magnification 
factor. The 3-D image is represented by a collection of all the 
reconstructed planes within the depth range (  Z range   ). Note 
that for the computational reconstruction, we have not con-
sidered the effects of diffraction. If we do so, it will dete-
riorate the reconstruction. For optical reconstruction, the 
pinhole array would deteriorate the reconstruction due to 
diffraction effects.

In certain 3-D pickup geometries, the accurate sen-
sor position and rotation may be difficult to measure if the 
sensors are on a moving or flexible surface, or if they are 
randomly distributed [76]. A camera pose estimation algo-
rithm to estimate a camera’s position without rotation was 
combined with an integral imaging reconstruction method 
in [77] and [78]. By using two known sensors’ positions and 
rotations, the position and rotation of the rest of the sensors 
can be estimated using the two-view geometry theory and 
the camera projective model. The estimation method can 
be used to improve the quality of the 3-D reconstruction if 
measurement errors exist.

3) Three-Dimensional Profilometric Reconstruction: Three-
dimensional information can be visualized as a 3-D profile 
of the scene. In [79], a method is proposed to estimate the 
depth information of a scene using a minimum variance 
(Min-Var) criterion. Considering a spectral radiation pattern 
function in the 3-D scene and relating it to various perspec-
tive elemental images, the depth of a convex surface under 
Lambertian illumination can be statistically inferred. Let us 
consider that the radiation intensity propagation in direction 
( θ, ϕ ) and with wavelength,  λ , is represented by the spec-
tral radiation pattern function, defined as  L(θ, ϕ, λ ), which  
corresponds to a certain point ( x ,  y ;  z ) in the 3-D space. 
Suppose that a set of elemental images is captured within 
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an  M × N  planar grid. The variance of the spectral radiation 
pattern function is

 D(x, y; z ) =   1 __ 
3

     ∑ 
w=1

  
3
      ∑ 

i=1
  

M
      ∑ 

j=1
  

N
      [L(  θ   i, j  ,  ϕ   i, j  ,  λ   w  )ΩLΩ(θ,ϕ,λw)]    

2
 (x, y; z)  (2)

where    L ̅    is the mean value of the spectral radiation pat-
tern function over all of the directions (perspectives), and  
w  represents the color channel of the digital elemental 
images.The variance along the depth range (  Z range   ) of the 
3-D scene will reach a minimum value when the point is 
located on an object surface. Depth information can be 
computed by searching the minimum variance of  D(x ,  y ) 
throughout   Z range   :

  z ̂  (x,  y )  =  arg  min  
z∈ Z range  

    D(x, y; z ) .  (3)

Combining the depth information and the 2-D elemen-
tal images, a 3-D profile of the scene can be reconstructed.

4) Depth Estimation Using a Photoconsistency-Based 
Criterion: Recently, a depth estimation method through a 
photoconsistency criterion based on a voting strategy has 
been presented in [80]. The proposed approach (hereafter 
called Max-Voting method) is based on a soft-voting proce-
dure that takes into account the level of agreement (simi-
larity) among the different camera views, using a similar 
strategy to those presented in [81]and [82]. The main idea 
for the voting process is that when an object is in focus at 
a certain depth level  z , the pixels of each camera corre-
sponding to that object should have a close color or inten-
sity value among them, i.e., they should accomplish a so-
called photoconsistency criterion. Although the concept of 
the Max-Voting method is similar to the minimum variance 
(Min-Var) criterion [see  (3)], the proposed method takes 
into account the local information around each pixel, i.e., 
a weight is given depending on color or grey scale values of 
the pixels in the neighborhood of another one. However, the 
Min-Var method does not take this into account.

Consider an integral imaging reconstruction process. 
At a certain depth range  z ∈  Z range   , the pixel at the position  
(i, j) of the image  I  and its square surrounding window  W  
are defined as   W ij   = { I(i + x, j + y)  :  − τ ≤ x ,  y ≤ τ }, where  τ  
defines the window size. Suppose a squared camera array, 
where  || C ||  is the number of cameras whose central cam-
era is  R ∈ C  and  I  is the depth reconstruction at depth  z . 
For each pixel (i, j) and its neighboring pixels (x, y) within 
the window   W ij    (i.e.,  ∀  (x, y)  ∈  W ij   ), we proposed in [80] a 
criterion based on a voting procedure where each camera 
votes in favor of the pixel (i, j) at depth level  z  depending on 
the similarity of the pixel intensities of each camera as com-
pared to camera  R . A threshold value (THR) is also assigned 
that denotes whether this similarity is good enough.

Similarity is measured using the Euclidean distance  d  
between the   a   ∗   b   ∗   values (from the   L   ∗   a   ∗   b   ∗   color space) for 
each pixel. For the voting strategy, each camera’s vote is 

weighted depending on the distance  d , which is equal to 
1 when the distance is zero, and decreasing exponentially 
until 0 when  d  is greater than the threshold (THR).

We can mathematically model the camera array elemen-
tal images  E(  p 1   ,   p 2   ,   p 3   ), where   p 1    and   p 2    are the pixel coor-
dinates and   p 3    is the camera number. Thus, centered on the 
pixel position (i, j), for each neighborhood pixel (x, y)  ∈  W ij    
and  ∀  C   k  ∈ C , the distance   d ij    is defined as the Euclidean 
distance among the pixel (i, j) from camera  R  and the pixels 
(x, y) from each camera   C   k  :

  d ij   (x, y )  =  √ 

____________________

    ∑ 
k
  

 ‖C‖ 
   (E(x, y,  C   k  ) − E(i, j, R ))    

2
     .  (4)

The camera  R  never changes, distance   d ij    is obtained 
for the pixel (i, j) at each position of the window   W ij    and 
summed up as follows: 

 V(i, j, z )  =   
 ∑ (x,y)  

 W ij      e     
−  [ d ij   (x,y) ]    2 

 _________ THR    
  __________  O ij  

   .  (5)

The voting value is also weighted by   O ij    to consider only 
the cameras that “see” the pixel (i,j), because some parts of 
the scene in  R  do not appear in other cameras. Thus a cor-
rect weight should only include those cameras that really 
contribute during the process.

Several experiments were conducted on synthetic images 
generated in 3ds Max software to computationally create two 
3-D scenes where we can put a camera array and syntheti-
cally generate elemental images. It is generated in this way 
because it allows us to have the depth ground truth for the 
objects in the scene. We can then use the root mean square 
error (RMSE) to evaluate the depth estimation methods.

The experimental setup conditions for each one of the 
synthetic scenes can be found in Table 1. The second and third 
columns show the camera square array configuration and the 
depth range from   Z min    to   Z max    with a step size of   Z step   . The 
fourth and fifth columns give the physical size of the camera 
sensor (  c x   ,   c y   ) in each direction (“ x ” and “ y ”), and the period 
of the cameras ( p ). The units for columns 3–5 are centimeters 
for the bathroom scene and millimeters for the Beethoven 
scene. The focal length of the camera is f  = 50  mm.

Fig. 6(a) shows the elemental image corresponding to 
camera  R  for the Bathroom and the Beethoven synthetic 
images. The first column in Fig. 6(b) shows the depth 
map obtained using 3ds Max. The synthetic images show 
the indoor spaces (Bathroom) and a foreground image 
of a Beethoven bust. The second and third columns of 
Fig. 6(b) show the depth estimation results of the Min-Var 

Table 1 Experimental Setup Features for  Synthetic Images Created in 

3dsMax [80]



Javidi et al . :  MOSIS: From Macroscales to Microscales

856 Proceedings of the IEEE | Vol. 105, No. 5, May 2017

and Max-Voting methods for the Bathroom and Beethoven 
images for a  5 × 5  window size and THR  = 1 .

Fig. 7 shows the results for the Bathroom image, where dif-
ferent window sizes have been applied, for THR  = 1 . From left 
to right, we show the generated depth map by the Max-Voting 
algorithm considering the following window sizes:  3 × 3 ,  7 × 7  
and  13 × 13 . We can see how the increase in the window size 
makes the results smoother; however, some details are lost.

The RMSE figure of merit has been chosen to evaluate 
the depth estimation results. Table 2 shows that the error 
is progressively lower when a bigger window size is used.

Tables 3 and 4 show the depth estimation error results 
obtained using the Min-Var method and the Max-Voting 
methods. Table 3 shows how errors in the scene are distrib-
uted. In particular, it shows the number of pixels (in percent-
age) whose errors are substantially large. The threshold value 
for considering large errors has been set to 100 cm for the 
Bathroom image and 50 mm for the Beethoven image.

Table 4 shows the RMSE values (expressed in centim-
eters or millimeters depending on the image) and the RMSE 
obtained if those pixels with high errors are not taken into 

account, showing that most of the RMSE error made by 
the algorithms is concentrated on a few pixels. Table 4 also 
shows that the real performance of the methods substan-
tially improves if these pixels are not taken into account.

I V.  THR EE-DIMENSIONA L 
POL A R IMETR IC IN TEGR A L IM AGING

A passive polarimetric integral imaging technique has 
been used for 3-D polarization measurement, and optical 
or computational 3-D visualization [46], [47], [83], and 
[84]. In this section, we present the results obtained by 
polarimetric 3-D sensing and visualization systems under 
various conditions.

A. Linear Illumination Condition and Optical 3-D 
Integral Imaging Display

The reflected light from a scene illuminated using lin-
early polarized light can be recorded as an elemental image 
array using a linear polarizer and a lenslet array (Fig. 1). By 
placing a rotating linear polarizer between the acquisition 
system and the lenslet array, the Jones vector of the polar-
ized light reflected from the object surface can be deter-
mined for the measurement of the polarization state of light. 
The elliptically polarized light can be modeled in terms of 
the Jones vector as

 E =  [ 
cos θ exp (iδ )

  
sin θ

   ]   (6)

where  θ  represents the rotation between the principal axes 
of the polarization vector in relation to the horizontal axis 
and  δ  is the phase retardation between the orthogonal pola-
rimetric components [46].

Fig. 6. (a) Synthetic images. Bathroom (left) and Beethoven (right) 
images. (b) Obtained depth maps. From left to right columns, 
ground-truth of the depth map, Min-Var method, and Max-Voting 
method [80].

Fig. 7. Effect of the window size on the depth estimation for the 
Bathroom scene. From left to right, window sizes of  3 × 3 ,  7 × 7  and  
13 × 13  [80].

Table 2 RMSE Results for  Bathroom Image While  Window Size Increases. 

From Left to Right,  Window Size Is Increasing From  3 × 3 to 13 × 13 [80] 

Table 3 Quantitative Results on Synthetic Images (I). From Left to 

Right, in Blocks, Images, Results for  Min-Var Approach and Results for 

the Max-Voting Approach [80]

Table 4 Quantitative Results on Synthetic Images (II). Second and 

Third Blocks Show  RMSE Values Obtained on Each Image (RMSE 

Column) and  RMSE Obtained if Pixels With High Errors Are Not Taken 

into Account (RMSE      ∗   column) [80]
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Once the elemental images are captured, and the polari-
zation state is obtained, the 3-D scene with a particular 
polarization distribution can be optically reconstructed. An 
optical system, as shown in Fig. 8, can generate arbitrary 
states of polarization for each elemental image [85]. The 
elemental images can be displayed using spatial light modu-
lators (SLMs) with two quarter-wave plates. The SLMs can 
be any type of LC-modes which can switch between 0– λ /4. 
The sample used in this experiment is TN-mode due to its 
large aperture ratio. In the future, FFS mode can be imple-
mented to further enlarge the viewing angle. Moreover, the 
3-D objects can be visualized with the polarimetric informa-
tion. In this case, the mathematical expression for the Jones 
vector is [46]

  

M =

  

 [ exp (iδ )    
0

     0  1  ]  (  i    0     
0  1  )  

⎛
 ⎜ 

⎝
 
cos   

ϕ   
 __ 2  
  

i sin   
ϕ

 __ 2  
        

i sin   
ϕ

 __ 2  
  

cos   
ϕ

 __ 2  
  
⎞

 ⎟ 
⎠

  

     

 

  

×  ( − i     0     0  1  )  (  1  0 )  =  

⎡
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⎣
 
exp (iδ )  cos   

ϕ
 __ 2  
  

– sin   
ϕ

 __ 2  
  

⎤
 ⎥ 

⎦
 

    (7)

where  ϕ  is the angle along the direction of polarization, and  
δ  represents the phase retardation between the two orthogo-
nal components [46], [85],  δ  and  ϕ  denote the amount of 
phase retardation between the orthogonal axes and the rota-
tion angle of the polarization direction, respectively. The 
variable rotation angle  ϕ  of the principal axes at each pixel 
can be realized by combining two quarter-wave plates and a 
phase-only liquid crystal SLM.

B. Natural Illumination Condition and 
Computational 3-D Integral Imaging Reconstruction

A 3-D polarimetric computational integral imaging sys-
tem has been presented in [83]. This system can measure 
the polarimetric information of the 3-D scene with natural 
illumination using the Stokes parameters. The Stokes vec-
tors [44] can be defined as follows:

  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 S 0   =  E  0x  2   +  E  0y  
2  

   
 S 1   =  E  0x  2   −  E  0y  

2  
   

 S 2   = 2  E 0x    E 0y   cos δ
   

 S 3   = 2  E 0x    E 0y   sin δ

     (8)

where   E 0x    and   E 0y    are the instantaneous amplitudes of the 
orthogonal components of the electric field, and  δ  is the 
instantaneous phase factor of the plane wave. The Stokes 
parameters of interest are denoted as   S i   , i = 0, …, 3 . The 
Stokes parameters enable us to describe the degree of polari-
zation (DoP) for any state of polarization

 DoP =   
 I pol  

 ___  I tot  
   =   

 ( √ 
________

  S  1  
2  +  S  2  2  +  S  3  2   ) 

  _________  S 0    ,  0 ≤ DoP ≤ 1  (9)

where   I pol    is the sum of the polarized intensity of the light 
beam, and   I tot    is the total intensity of the light beam. When 
DoP is 1, the measured light is completely polarized, and 
when DoP is 0, the light is unpolarized. The degree of lin-
ear polarization (DoLP) and the degree of circular polariza-
tion (DoCP) can be expressed as  DoLP =  √ 

_____
  S  1  

2  +  S  2  2    /  S 0    and  
DoCP =  √ 

__
  S  3  2    /  S 0   , respectively.

The 3-D polarimetric sensing system based on the mov-
ing sensor array synthetic aperture integral imaging [65] 
technique is shown in Fig. 9(a). A linear polarizer and a 
quarter-wave plate are combined and placed in front of a 
digital camera for polarimetric imaging [86], [87]. Using 
(8), the Stokes parameters are measured as

  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

 S 0   =  I   0°,0  +  I   90°,0 

   
 S 1   =  I   0°,0  −  I   90°,0 

   
 S 2   =  I   45°,0  +  I   135°,0 

   

 S 3   =  I   45°,π/2  −  I   135°,π/2 

    (10)

where  I  is the intensity of captured polarimetric images,   
Iα° , 0  represents the linear rotating polarizer with an angle 
of  α  degrees in relation to the  x  axis.  Iα° , π / 2  indicates that 
a quarter-wave plate is combined with the polarizer. When 

Fig. 9. (a) Schematic of the polarimetric 3-D pickup system based 
on synthetic aperture integral imaging. (b) Example of captured 
elemental images. (c) Polarimetric elemental image with the degree 
of polarization corresponding to (b).

Fig. 8. Diagram of the optical system to obtain an arbitrary state 
of elliptical polarization from the elemental images. Lines in the 
quarter-wave plate and liquid-crystal spatial light modulator  
(LC-SLM) denote the principal axes [46].
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light passes through the quarter-wave plate, one-quarter of 
a wave phase shift between the orthogonal components is 
introduced. In the measurement, the wave plate is fixed 
with its fast axis along the  x  axis and the transmission axis 
of the linear polarizer is rotated with  α° . A total of six sets 
of polarimetric elemental images is needed for each sensor 
position.

In Fig. 9(a), an experiment is depicted where two cars 
were placed at a distance of 530 mm from the sensor and 
a moving camera was used to record images. A car was 
occluded by a tree approximately 450 mm from the sensor 
while two trees were located approximately 720 mm away. 
A total of  6 × 6  elemental images were taken at different 
positions for 3-D sensing. Fig. 9(b) gives an example of the 
captured elemental image. The polarimetric image with the 
measured degree of polarization is illustrated in Fig. 9(c). 
The degree of polarization of the light reflected from the 
surface of the occluded car is larger than the degree of polar-
ization of the occlusion and the background [83].

The 3-D integral imaging computational reconstruction 
algorithm was modified to combine the polarization infor-
mation and the original pixel information of the captured 
elemental images. Three-dimensional reconstruction can be 
implemented with a threshold (THR) applied to the degree 
of polarization images. Only pixels whose respective degree 
of polarization is higher than the threshold will contribute 
to the reconstruction. The reconstructed 3-D images con-
tain both the depth information of the scene and the polari-
zation state of the light reflected from the object surface. 
The experimental results of the 3-D polarimetric recon-
struction are given in Fig. 10. The 3-D images obtained by 
the conventional integral imaging computational recon-
struction method are shown in Fig. 10(a). The objects in the 
3-D scene are in focus at their respective depth positions.  
Fig. 10(b) illustrates the 3-D polarimetric reconstructed 
images at the respective depth with a threshold of  
THR  = 0 . 2 . With this threshold, only the surface (cars) 

with higher degree of polarization reflected light is recon-
structed, and the occlusion and background can be avoided 
because of the relatively lower degree of polarization infor-
mation. The 3-D computational polarimetric integral imag-
ing can be used for material inspection and detection which 
will be discussed in Section VII-A.

C. Three-Dimensional Polarimetric Integral Imaging 
in Photon Starved Conditions

In [84], a method for polarimetric 3-D integral imag-
ing in photon starved conditions was proposed. As the 
photon counting images captured under low light illumi-
nation conditions are very sparse, the Stokes parameters 
and the degree of polarization are difficult to measure with 
conventional methods. By using the maximum likelihood 
estimation method, polarimetric 3-D integral images are 
generated [88]. In order to obtain high quality polarimet-
ric reconstructed images, a total variation denoising filter 
is implemented to efficiently remove the noise from the 
image and preserve the signal corresponding to the scene 
[89], [90]. The extracted polarimetric features can be used 
in pattern recognition algorithms.

As discussed in Section IV-B, a quarter-wave plate 
and a linear polarizer can be combined and placed ahead 
of the sensor for polarimetric imaging. 3-D polarimetric 
elemental images can be obtained by capturing the pola-
rimetric distributions   i  k,l  

0°,0  ,   i  k,l  
90°,0  ,   i  k,l  

45°,0  ,   i  k,l  
135°,0  ,   i  k,l  

45°,π/2   and 
  i  k,l  
135°,π/2   at each camera position ( k ,  l ). For the case of an 

integral imaging acquisition process in photon starved con-
ditions, the photon counting model should be used. The 
detected photons in the captured images can be simulated 
using the Poisson distribution function [91]

 P (m; x, y)  =    
  [ n  k,l  

α, β  (x, y) ]    
m

  exp [−  n  k,l  
α, β  (x, y) ] 

   ______________________  m !    (11)

where ( x ,  y ) is the pixel index,  m  represents the number of 
the photons that have been detected.  α  is the degree of the 
linear rotating polarizer in relation to the  x  axis, and  β  rep-
resents the quarter-wave plate. If  β = π /2, a quarter-wave 
plate is placed in front of the linear polarizer, otherwise  
( β = 0 ) only the linear polarizer is used for the acquisition.   
n  k,l  

α, β  (x, y)   is the normalized irradiance [84]

  n  k,l  
α.β  (x, y)  =   

 N p    i  k,l  
α, β  (x, y) 

 _________ 
 ∑ 
x,y

    i  k,l  
α, β  (x, y)  

    (12)

where   N p    is the number of photon counts predetermined 
in the scene. As discussed in [92], using the maximum 
likelihood estimation for integral imaging, the 3-D recon-
struction can be obtained by averaging the normalized 
photon counting irradiance (    i ̂    k,l  

α, β  ) from the captured pola-
rimetric elemental images (  i  k,l  

α, β  ). Using (12) and (1), the 
photon counting 3-D polarimetric reconstructed image 
can be expressed as

Fig. 10. Integral imaging depth reconstruction results at 450 mm, 
530 mm and 720 mm. (a) 3-D reconstructions using conventional 
integral imaging. (b) 3-D reconstructions using the polarization 
state of each pixel. Degree of polarization threshold is 0.2 [83].
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    I ̂     α,β  (x, y; z)  ∝   ∑ 
k=1

  
M

    ∑ 
 l=1

  
N

   i  k,l  
α,β  (x +   

 c  x  k,l 
 ___  r z     , y +   

 c  y  
k,l 

 ___  r z    )    .  (13)

The Stokes parameters and degree of polarization can be 
calculated using (10) and (9), respectively.

Experiments were performed with the same setup 
described in Section IV-B. Photon counting imaging was 
computationally applied to the elemental images shown in 
Fig. 9(b). The model of the recording device used for gener-
ating the polarimetric photon counting elemental images is 
a binary photon counting camera and the elemental images 
were statistically transformed by the Poisson distribution. 
As a result, we were able to determine the number of pho-
tons per pixel. We arbitrarily chose 0.01 and 0.05 photons 
per pixel, as images with such few photons have limited 
information. The reconstructed results using maximum like-
lihood estimation are noisy and have a low dynamic range. 
Fig. 11(a) and (b) shows the 3-D reconstructed results using 
the maximum likelihood estimation. The elemental images 
used for the 3-D reconstruction contained few photons. 
In the 3-D reconstruction process, noise will be dominant 
under the photon starved conditions due to the low SNR 
value, and noise may degrade the quality of the measure-
ment of the recorded polarization. Fig. 11(c) and (d) illus-
trates the degree of polarization measured by the maximum 
likelihood estimation using (10) and (13). As shown in  
Fig. 11(c), when the number of photons is relatively low, 
(0.01 photons/pixel), the whole scene was measured with 
high polarized characteristics. For the case where the num-
ber of photons per pixel increases to 0.05, as shown in  
Fig. 11(d), the degree of polarization result improves. 
However, the background areas, as shown in Fig. 11(d), still 
have high degree of polarization values compared to the 
results with Fig. 9(c).

The mean structural similarity index measure (MSSIM) 
[93] was implemented to quantitatively compare two 
reconstructed images using the 3-D integral imaging 

computational reconstruction method. In order to compare 
two images ( X  and  Y ), MSSIM considers a set of  M  8 × 8  
pixels subimages {  x j   } and {  y j   } obtained from  X  and  Y . The 
local structural similarity index measure (SSIM) between 
the respective subimages   x j    and   y j    is [84]

 SSIM ( x j   ,  y j  )  =   
 (2  μ  xj    μ  yj   +  c 1j  )  (2  σ  xyj   +  c 2j  ) 

  ___________________   
 ( μ  xj  

2   +  μ  yj  
2   +  c 1j  )  ( σ  xj  

2   +  σ  yj  
2   +  c 2j  ) 

       (14)

where   μ  xj    and   μ  yj    are the averages of the subimages   x j    and   
y j   , respectively.   σ  xj   ,   σ  yj    and   σ  xyj    are the variances of   x j   ,   y j    
and the covariance, respectively.   c 1j    and   c 2j    are two tuning 
parameters which correspond to the square of the dynamic 
range (D), i.e.,   c 1j   = (  k 1j    D)2 and   c 2j   = (  k 2j    D)2. The dynamic 
range of an image depends on the maximum and minimum 
pixel values, the   k 1    and   k 2    values used were 0.01 and 0.03 
respectively. Finally, the MSSIM is obtained by averaging 
the SSIM over all windows:

 MSSIM (X, Y)  =   1 __ M     ∑ 
j=1

  
M

  SSIM ( x j   ,  y j  )   .  (15)

Since this index is normalized, MSSIM  = 1  only if the 
two images ( X ,  Y ) are the same. The MSSIM values for 
the 3-D reconstruction and the corresponding degree of 
polarization results in Fig. 11 are shown in Table 5. The 

Fig. 11. Three-dimensional integral imaging reconstruction 
results for photon counting conditions using maximum likelihood 
estimation at z  = 530  mm: (a) 0.01 photons per pixel, and (b) 0.05 
photons per pixel. Degree of polarization for integral imaging with 
photon counting: (c) 0.01 photons per pixel, and (d) 0.05 photons 
per pixel [84].

Table 5 MSSIM Comparison Results Using Maximum Likelihood  

Estimation and Degree of Polarization in Fig. 11 [84]

Table 6 MSSIM Comparison Results Using Maximum Likelihood 

Reconstruction and Total Variation Minimization Denoising in  

Fig. 12 [84]

Fig. 12. Three-dimensional integral imaging reconstruction under 
photon starved conditions at z  = 530  mm. Total variation minimization 
is applied on the reconstructed image with (a) 0.01 photons per pixel, 
and (b) 0.05 photons per pixel. Total variation minimization is then 
applied to the polarimetric images at z  = 530  mm with (c) 0.01 photons 
per pixel, and (d) 0.05 photons per pixel [84].
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reference reconstructed image and degree of polarization are in  
Fig. 9(b) and (c), respectively. The MSSIM values for both recon-
structed image and the degree of polarization are very small.

In order to improve the 3-D reconstruction results of 
integral imaging with photon counting, total variation 
denoising filters are used, since these filters are able to 
remove noise from the image without affecting the signal 
[90]. In the experiment, the authors used the Chamolle 
approach [94] implemented in the scikit-image library [95]. 
Using the nomenclature in [89], the total variation denois-
ing strategy can be mathematically written as [84]

  min  μ    [ ∫      | μ  0   − μ|    2   dxdy + γ  ∫     √ 

_____________

    (  
∂μ

 ___ 
∂ x

  )    
2

  +   (  
∂ μ

 ___ 
∂ y

  )    
2

    dxdy ]       (16)

where  γ   is a regularization parameter,   μ  0    is the noisy image, 
and  μ  is the reconstructed image.

The photon counting 3-D reconstructed image pro-
cessed by the total variation method is shown in Fig. 12(a), 
and the corresponding degree of polarization is illustrated 
in Fig. 12(b). Using the total variation denoising, the cor-
responding degree of polarization was obtained from the 
denoised version of the photon counting 3-D polarimetric 
reconstructed images     I ̂     α, β   [see (13)]. The degree of polar-
ization results shown in Fig. 12 (c) and (d) is similar to 
the reference degree of polarization image [Fig. 9(c)]. The 
MSSIM comparison results for the maximum likelihood 
reconstruction and total variation minimization are pre-
sented in Table 6. Note that for 0.05 photons/pixel, the 
MSSIM value was approximately 1 for the reconstructed 
3-D image while the MSSIM value for the degree of polari-
zation image was about 0.67.

V. THR EE-DIMENSIONA L IN TEGR A L 
IM AGING IN THE INFR A R ED DOM A IN

Multispectral imaging allows for the acquisition of images 
in a series of spectral bands. Nowadays, image acquisition 
capabilities have extended from the visible spectrum to the 
near-infrared (NIR), mid-wave-infrared (MWIR) [9] and 

long-wave-infrared (LWIR) ranges. Moreover, multispec-
tral imaging has been used in fields such as medical imaging 
and remote sensing. In this section, we present 3-D integral 
imaging acquisition and visualization methods in the infra-
red domain.

A. Long-Distance Mid-Wave-Infrared Integral 
Imaging

We have demonstrated that integral imaging can work 
well for long-range objects. This section describes an over-
view of the work about synthetic aperture integral imaging 
3-D acquisition and reconstruction of scenes in short range 
(indoor scenes) and long-range distances of up to 2 km using 
sensors that operate in the visible, MWIR and LWIR ranges 
[9], [24], and [102].

1) High-Level Illumination Conditions: An Aura imaging 
system (working in the MWIR range) was used to acquire a 
group of 10 elemental images of an airfield base. The elemen-
tal images were acquired with a horizontal-only movement 
of the camera. The horizontal pick up range was 7 m, and 
the acquisition positions were periodically spread over this 
range for the corresponding number of camera acquisitions. 
The camera has a 120 mm lens and pixel size of  19 . 5 μm . 
Each elemental image has a resolution of  1024 × 1024  pix-
els. Fig. 13(a) shows an example of an elemental image of 
this airfield scene.

A technique based on a 3-D template matching approach 
for robust depth estimation in the mid-wave-infrared range 
was developed. The template data was selected from one 
elemental image and the function that was optimized is

  z ′   = arg  min Z   { ∑ x     ∑ y    [T(x, y )  − R(x, y; z )]     2  }   (17)

where  T(x ,  y ) is the template and  R(x ,  y ;  z ) is the recon-
structed scene for each depth. Fig. 14 shows a diagram 
of the template matching strategy for depth estimation. 
Results using this search algorithm for four targets at known 
ranges are shown in Table 7. Fig. 13(b) shows the resulting 
range map for the scene. We can see that the overall range 

Fig. 13. (a) Captured elemental image. (b) Range map using 
automatic segmentation [9]. Fig. 14. Overview of the range search algorithm [9].
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estimation results are correct, but the method finds some 
problems on trees that are closer to the camera array.

2) Photon Counting Illumination Conditions for Long-Range 
Objects: Another group of elemental images consisting of a 
scene with a road, a series of trees and a car behind them, 
as shown in Fig. 15(a), was captured and a photon count-
ing simulation process was applied on the elemental images 
[24]. Our working assumption is that infrared detectors are 
applied in a regime for which the measured photon counts 
are well approximated by Poisson distribution [96].

The likelihood of the irradiance estimation from the 
photon counting elemental images can be modeled as [92]

 L [ I  p   z 0    |  C kl   (p + Δ  p kl   )] =  ∏ k=1  
K    ∏ l=1  

L   Pr ( C kl   (p + Δ  p kl  )  | I  p   z 0    )      
 (18)

where  p ≡  ( x ,  y ) is an object pixel position for an elemental 
image, and  Δ  p kl    describes its shift on each elemental image.   
C kl   (p + Δ  p kl  )   is the value of pixel  p + Δ  p kl    for elemental 
image of indices  kl  in photon counting conditions.

The maximum likelihood irradiance estimation is given 
by [24]

      I ̃    p   z 0    =  C N   ⋅  ∑ k    ∑ l    C kl   (p + Δ  p kl   )   .  (19)

Therefore, the result of the reconstruction for a spe-
cific depth also gives an estimation of its corresponding 
irradiance.

Three noise levels (layers) were added to each one of the 
elemental images   N dc   =  { 10   4  ,  10   5  ,  10   6 }   simulating the 
existence of dark current (dc) noise. Some HgCdTe mid-
wave-infrared detectors may also have these dark current 
noise levels (see [25, Fig. 8]).

Fig. 15(b) and (c) shows the 3-D reconstruction for  z = 
237m  when the number of photon counts for each elemen-
tal image is   N p   = 3 ×  10   5  , and where the dark current noise 
level is   N dc   = 0  and   N dc   =  10   6   photons, respectively. The 
visualization quality of the depth reconstructed images was 
highlighted using an image denoising technique based on 
the wavelet shrinkage approach [97]. The threshold value 
was fixed at  T = 4 . The peak signal to noise ratio (PSNR) was 
used as a reference for the quality assessment of the photon 
counting reconstructed scenes. The PSNR is defined as

 PSNR = 10 ⋅  log 10   [  
 I  Max  2  

 ________ 
MSE (I,  I ̃  ) 

  ]   (20)

where  MSE (I,  I ̃  )   is the mean square error which provides an 
estimation of the average error per reconstructed pixel of 
the 3-D scene, and   I  Max  2    is the square of the maximum value 
of the original reconstructed scene.

Fig. 16 shows the PSNR value as the number of photon 
counts per elemental image,   N p    increases, for a reconstruction 
distance of 237 m (the depth where the car behind the trees is in 
focus), for the following cases:   N dc   =  {0,  10   4  ,  10   5  ,  10   6 }  . For the 
case where no dark current noise exists   PNSR ∝ log ( N p  )   as shown 
in [92]. This theoretical dependence is also shown in Fig. 16. 

Fig. 16. PSNR versus Np   for the trees and car scene reconstructed 
at Z  = 237  m, for Ndc  =  {0,   10   4  ,   10   5  ,   10   6  } [24].

Table 7 Estimated Range Results Using  Method Shown in  

Fig. 14 [9]

666

Measured (m) Estimated (m) ∆ (m)
710 -44

-46

-14

176

1015

1443

2065

969

1429

2241

Fig. 15. (a) An example of an elemental image used with a road, 
a series of trees and a car behind one of them. Reconstruction 
results for z = 237 m  when Np  = 3 ×  10   5   photon counting photons per 
elemental image exist, (b) without (Ndc = 0 ) and (c) with ( Ndc =  10   6  ) 
photons corresponding to dark current noise, respectively [24].
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We conclude that the RMSE error decreases as   N p    increases and 
therefore the PSNR value increases. On the other hand, we see 
that the PSNR and   N dc    noise are inversely proportional.

B. Three-Dimensional Image Reconstruction Using 
the Alternating Extragradient Method on Mid-Wave-
Infrared Photon Counting Images

In this section, we discuss the application of an image 
restoration method called “Alternating Extragradient 
Method”. This method was recently proposed in [98]. To 
the best of the authors’ knowledge, it is the first time that 
this method is applied on MWIR photon counting images.

An image with approximately   N p    number of photons can 
be simulated if we consider its normalized irradiance ver-
sion   I i    (such that   ∑ i=1  

 N T      I i    , where  i  is the pixel number, and   
N T    the total number of pixels of an image), and assume a 
Poisson random number with mean parameter   N p   ⋅  I i   . In 
this framework the Poisson distribution can be written as   

Pr ( C i   |  I i  )  =   
  ( I i  )     C i    ⋅  e   − I i   

 ________  C i   !
   ;  C i   = 0, 1, 2, …  where   C i    means  C  

photons at pixel  i . On the other hand, let us consider the 
image formation as a linear process.

We can define  C ∈  R    N T     as the detected data, and   C i    as the 
value at each pixel under the assumption that the variable 
follows a Poisson distribution with expected value    (Hx + b)  i    
and where, on the one hand  x ∈  R    N T     is the scene we aim at 
recovering,  H ∈  R   m× N T     models the optical system and  b ∈  R   m   
is a positive offset term. We can model this restoration prob-
lem as an optimization of the type [99]   min  

x≥η
    f (x)  ≡  f 0   (x)  +  

β ⋅  f 1   (x)  , where   f 0   (x)   measures data similarity,   f 1   (x)   is a regu-
larizer-type functional and  b  is an offset. The restored image 
should have positive values, and therefore  x ≥ η , where  
 η ∈  R    N T    ,  η ≥ 0 .

It can be shown that this problem has a primal-dual (or 
saddle-point) equivalent formulation:   min  

x∈X
     max  

y∈Y
    F (x, y)   where  

X  and  Y  are two feasible sets with restrictions such that  
 D = X × Y  is a closed and convex domain and  F  is a smooth 
convex-concave function [98]. The Kullback-Leibler dis-
tance can be used in this case and expressed as follows [98]:

  
 min  
x∈X

     max  
y∈Y

    F (x, y)  ≡
  

 ∑ 
i
    {  C i   ln   

 C i   _______ 
  (Hx + b)  i  

   +   (Hx + b)  i   −  C i   }  
     

 
  

+β ⋅  y   T  ⋅ z (x) 
    

 (21)

where  X =  {x ∈  R    N T    : x ≥ η}   and  z (x)   and  Y  are given by:  
z (x)  = Ax ,  A =   ( A 1   ,  A 2   , …,  A  N T    )    T   and  Y =  {y ∈  R   2n  :  y  2i−1  

2   +  
y  2i  

2   ≤ 1; i = 1, 2, …,  N T  }  .   A k   ∈  R   2× N T     is a matrix with only 
two nonzero entries on each row, equal to −1 and +1. The 
Alternating Extragradient Method uses the following three 
iteration formulas:

  

⎧

 
⎪

 ⎨ 
⎪

 

⎩

 

   y ̅      (k)   =  O Y   [ y    (k)   +  γ  k    ∇ y   F ( x    (k)   ,  y    (k)  ) ] 

     x    (k+1)   =  O X   [ x    (k)   −  γ  k    ∇ x   F ( x    (k)   ,    y ̅      (k)  ) ]     

 y    (k+1)   =  O Y   [ y    (k)   +  γ  k    ∇ y   F ( x    (k+1)   ,  y    (k)  ) ] 

    (22)

where   O X    and   O Y    denote the orthogonal projection opera-
tors onto the sets  X  and  Y , and  γ > 0  a constant. We refer the 
reader to [98] for further algorithmic details.

The elemental images used in this section are the same 
as those used in Section V-A. The corresponding photon 
counting elemental images were generated and an addi-
tional noise level of   N dc   =  10   6   photons was added to each 
one of them for both scenes.

Fig. 17 illustrates the results for the integral imaging 
reconstruction case when   N dc   =  10   6   dark current photons 
are added to the   N p   = 3 . 0 ×  10   5   photons for the previous 
case, and therefore, a total amount of 1.24 photons/pixel are 
present in each elemental image. Fig. 17(a) shows the depth 
reconstruction for the scene with a car and trees occluding 
the car, for z  = 237  m. Fig. 17(b) shows the depth reconstruc-
tion for the scene of an airfield base for z  = 960  m. Fig. 17(c) 
shows the depth reconstruction for the base for z  = 2 . 2  km. 
Fig. 17(d)¬(f) shows the reconstruction results for the cases 
(a)¬(c) when using the alternating extragradient method 
[98] for  β =  {0 . 25, 0 . 14, 0 . 14}  , respectively. Finally, we 
should stress that the alternating extragradient method out-
performed the maximum likelihood method in the whole 
photon counting domain tested (from 0 to   10   6   photons per 
elemental image). As shown in Fig. 18, the results obtained 
by the alternating extragradient method (AEM) were sub-
stantially better than those of maximum likelihood (ML) 
method for the whole photon counting level range consid-
ered, both for the case where no dark current was considered 
as for the case when   N dc   =  10   6   photons were added.

C. Three-Dimensional Imaging in Long-Wave-
Infrared Spectrum

Images in the long-wave-infrared (LWIR) range acquire 
self-radiation of an object rather than the light reflected 

Fig. 17. Reconstruction results for two different scenes, considering  
Np = 3 . 0 ×  10   5   photons, and where Ndc  =  10   6   photons have also 
been added (1.24 photons/pixel in total). (a) Depth reconstruction 
for the scene with a car and trees occluding it, for z  = 237  m. (b) 
Depth reconstruction for the scene of an airfield base for z  = 960  m. 
(c) Depth reconstruction for the same scene of the airfield base for 
z  = 2 . 2km.(d)±(f)Reconstructionresultsforthecases(a)±(c)when
using the alternating extragradient method [98] for  
 β =  {0 . 25, 0 . 14, 0 . 14}  , respectively.
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from an object’s surface thus eliminating illumination 
issues [100]. This makes LWIR imaging especially useful 
in night time settings. The LWIR sensors capture informa-
tion between the wavelength range of approximately 8 to  
15 μm  [100] and was originally used for military applications 
including surveillance and night vision. This technology has 
found applications in other fields such as diagnosing inflam-
mations in the legs and hoofs of horses, fungal infections 
in wheat, and finding the heat loss from air vents and win-
dows [101]. It is worth noting that the resolution of an LWIR 
image is poorer compared to an image in the visible spec-
trum due to the longer light wavelength as described by the 
Abbe diffraction limit [100].

We have implemented passive 3-D imaging using 
synthetic aperture integral imaging with LWIR imag-
ing for outdoor applications [102]. Three-dimensional 
image reconstruction can remove occlusions in front of 
an object assuming there is sufficient distance between 
the object and the occlusion [103]. To capture the ele-
mental images, the LWIR camera used was a TAMARISK 
320 with a resolution of  320 × 240  pixels and pixel size 
of  17 μm  with a field of view (FOV) of 27°. Moreover, 
the 3-D experiment used a  7 × 3  camera array with a 
period of 30 mm in a night time setting. The output of 
the camera is an analog signal which is converted to a 

digital signal yielding a  640 × 480  pixels image. Fig. 
19(a) depicts a sample 2-D elemental image, which con-
tains a person located 14.5 m away occluded by branches.  
Fig. 19(b) depicts the 3-D reconstruction at  z = 14 . 5  m 
which was able to remove the branches in front of the 
person.

V I.  THR EE-DIMENSIONA L IN TEGR A L 
IM AGING W ITH TIME DOM A IN FOR 3 -D 
GEST U R E R ECOGNITION

For dynamic objects and targets, information also varies in 
the time domain. Three-dimensional sensing, processing 
and visualization in the time domain are also discussed in 
this section. In this section, we present a 3-D video system 
by using the integral imaging technique for 3-D human ges-
ture and activity recognition [104].

In order to acquire a series of human actions/gestures, a 
group of nine cameras in a  3 × 3  array configuration was con-
sidered (Fig. 20). This is a synthetic aperture integral imag-
ing system working in the resolution priority integral imaging 
mode [105]. In particular, nine Stingray F080B/C cameras 
(with a resolution of  1024 × 768  pixels) were synchronized 
through a 1394 bus, acquiring videos at 15 frames per second.

Fig. 20. A   3 × 3  camera array used for acquisition of the videos 
aiming at human activity recognition [104].

Fig. 21. 3-D gesture recognition experiments. Images show the 
reconstruction capability of the system, for the same frame, and for 
a specific person and gesture: (a) background, (b) head, and (c) fist. 
Depth reconstruction focusing at the hand's gesture: (d) open, (e) 
left, and (f) deny [104].

Fig. 19. 3-D scene captured using LWIR imaging. (a) Person located 
14.5 m away is occluded by branches while (b)  3-D reconstructed 
image at z  = 14 . 5  m removes the occlusion in front of the person [102].

Fig. 18. PSNR versus  NP  for the results obtained by using the 
alternating extragradient method (AEM) method and the maximum 
likelihood (ML) method.
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Impact of the errors associated to the position and ori-
entation of the cameras can be diminished if the acquired 
videos are rectified [106], [107].

Fig. 21(a)¬(c) shows the reconstruction capability of the 
system for the same person and gesture, for three different 
depths, and the same frame. Fig. 21(d)¬(f) shows the recon-
structed scene at the depth where the hand (doing the gesture) 
is approximately in focus. These videos (obtained after the 
reconstruction process) can be used for 3-D gesture recogni-
tion in time domain.

The procedure for gesture recognition as shown in Fig. 22, 
follows the so-called “bag of visual words” approach [108].

Fig. 23 shows the mean accuracy versus the number 
of words used. Integral imaging accuracy is higher than 
monocular imaging for all the number of words used, 
except for  K = 50 . The Histogram of Optical Flow (HOF) 
and the Histogram of Oriented Gradients (HOG) are his-
tograms formed from the optical flow or the oriented gra-
dient information in the reconstructed image. Both tech-
niques have shown a great potential when used as feature 
vectors in order to apply a “bag-of-words” approach for 
action recognition.

V II.  MU LTIDIMENSIONA L OP TIC A L 
SENSING A ND IM AGING SYSTEM 
(MOSIS)  2 .0

In this section, the recent progress of integral-imaging-
based MOSIS 2.0 is presented. MOSIS 2.0 is an improve-
ment of the original concept of MOSIS [51], for object rec-
ognition, material inspection, integrated 3-D visualization, 
etc., which can significantly improve image understanding.

A. Multidimensional Optical Sensing and Imaging 
System 2.0: Visualization, Target Recognition, and 
Material Inspection

We present some recent progress on the MOSIS 2.0 for 
target recognition, material inspection and integrated visu-
alization from a scene.

MOSIS 2.0 is the successor to MOSIS [51]. The 
degrees of freedom of MOSIS 2.0 include visible and IR 
bands, including near-infrared (NIR) spectral bands, state 
of polarization of light reflected from object surface, and 
depth and directional information of the scene. MOSIS 
2.0 uses synthetic aperture integral imaging [65] for 3-D 
sensing of a complex scene which may include objects with 
heavy occlusion. Computationally reconstructed images 
provide in focus information of the objects on the respec-
tive depth planes with mitigated occlusion. The 3-D object 
recognition can be performed on the reconstructed scene. 
In the experiments, we have used histogram of oriented 
gradients (HOG) [109] for feature extraction and a sup-
port vector machine (SVM) [110]–[112] as a classifier. In 
MOSIS 2.0 with polarimetric imaging, the degree of polari-
zation of the light reflected from the 3-D scene is calculated 
using the Stokes parameters. Depth and degree of polariza-
tion information are integrated during 3-D reconstruction. 
The polarimetric characteristics of the reflected light from 
the object’s surface are used for material inspection. By 
implementing the segmentation algorithm within the mul-
tispectral bands, materials with specific spectral properties 
are extracted. Multidimensionally integrated visualization 
reveals more information of the scene for improved image 
understanding and information analysis. Fig. 24 illustrates 
the diagram of the proposed MOSIS 2.0.

1) Multidimensional Optical Sensing With MOSIS 2.0: In 
MOSIS 2.0, we have implemented multidimensional image 
sensing with synthetic aperture integral imaging. Compared 
with the lenslet based pickup, synthetic aperture integral 
imaging captures a 3-D scene with a camera array or a mov-
ing camera. Therefore, the viewing resolution and field of 
view of the system can be improved. The acquisition struc-
ture and parameters are flexible as well. Multispectral sens-
ing can be done using a CMOS or CCD camera with specific 
filters. To consider the visible spectrum only, a near-infrared 
(NIR) cutoff filter needs to be fixed in front of the sensor. 
To capture the NIR spectrum image, a color spectral cutoff  

Fig. 22. Building blocks of the proposed 3-D human gesture 
recognition system [104].

Fig. 23. Three-dimensional gesture recognition classification 
results using the best descriptor in each case [monocular (2-D) and 
3-D integral imaging] [104].
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filter is used to block the visible band. Likewise, a variety of 
IR bands may be used.

2) Three-Dimensional Object Recognition with MOSIS 2.0: 
As discussed in Section III, the depth estimation method 
shown in [79] can be used to create a depth map related to a 
particular sensor perspective. By using integral imaging com-
putational reconstruction [73], [75], occlusion in front of the 
target can be mitigated in the 3-D reconstructed images.

Applying the histogram of oriented gradients (HOG) 
[109], the reconstructed image is used for 3-D object recogni-
tion. The pixel gradient vector in a 3-D image is extracted as 

  
{

 
 |∇f|  =  √ 

_________
   ( I  x  z  )    2  +   ( I  y  

z  )    2   
   

α = arctan ( I  y  
z   /  I  x  z  ) 

     (23)

where   I  x  z    and   I  y  
z    are the pixel gradients along the  x  and  y  

directions of the 3-D image reconstructed at depth of  z .  

The oriented gradients vectors and histogram are computed 
to quantize and compress the feature descriptor.

The extracted HOG features are then fed into a support 
vector machine (SVM) for classification between true class 
(target of interest) and false class (others) by finding an 
optimized separating hyper plane. The hyper plane can be 
expressed by a discriminant function  g(x )  =  w   T  x + b . The 
best classification result should have a maximum margin, so 
that the hyper plane boundary width can be maximized. The 
optimization problem is

 min     1 __ 2     ‖w‖    2  ,  

s . t .    y i   (  w   T   x i   + b )  ≥ 1, i = 1, 2…N  (24)

where  w  is a coefficients vector,  b  is a constant,   x i    are the train-
ing vectors,   y i    are the labels of the corresponding data points 
and  N  is the number of data points of the training set. For 
the case that noisy data points exist, slack variables are added 
to allow for misclassification [110]. To solve the nonlinearly 

Fig. 24. Diagram of the proposed MOSIS 2.0.
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separable problem, the original space can be transformed into 
a higher dimensional feature space to make the feature set 
separable. With such nonlinear mapping, the discriminant 
function becomes  g(x ) =  w   T  ϕ(x )  + b , and (24) is modified as

  min  
w,b,ξ

        1 __ 
2

     ‖w‖    2  + C  ∑ 
i=1

  
N

   ξ 
i
    ,  

s . t .    y 
i
   ( w   T  ϕ(  x 

i
   ) + b)  ≥ 1 −  ξ 

i
    (25)

where   ξ  i    are positive slack variables,  ϕ (.) is the nonlinear 
mapping of   x i    to a higher dimensional space, and  C  is a pen-
alty parameter to control over-fitting.

The decision function for a training vector   x j    is a sign 
function

 sign ( ∑ i=1  
N    y i    a i   K(  x i   ,  x j   )  + b)   (26)

where   a i    are the Lagrange multipliers found by optimiza-
tion.  K(  x i   ,  x j   ) ≡ ϕ  (  x i   )   T  ϕ(  x j   )  is the kernel function.

The 3-D reconstructed images are used for 3-D object 
recognition. The occlusion is mitigated in the 3-D recon-
structed images, which is why the 3-D object recognition 
process is effective. If we apply the object recognition pro-
cess to the 2-D elemental images directly, the features of the 
objects cannot be extracted because of the occlusion, and 
the SVM does not work either.

3) Three-dimensional Material Inspection with 
MOSIS 2.0: We perform material inspection on the 3-D 
reconstructed image with polarimetric properties. If 
there is occlusion in front of an object, conventional com-
putational reconstruction introduced in Section II can 
visualize objects by mitigating the occlusion; however, 
the pixel overlap and averaging process may degrade the 
polarization characteristics of the light reflected from the 
object’s surface. To preserve this polarimetric informa-
tion, we combine the estimated depth information with 
the degree of polarization property for 3-D polarimetric 
reconstruction. The modified reconstruction approach is 
expressed as

  R 
DoP

   (x, y; z)  =   1 __ 
K

    ∑ 
i=1

  
M

   ∑ 
j=1

  
N

   [E I   
DoP

  i,j   (x +   
 c  

x
  i,j 
 ___  r 

z
     ,      y +   

 c  
y
  i,j 
 ___  r 

z
    )  ×  ξ   i,j  (x, y) ]   (27)

where  M  and  N  are the number of elemental images in the  
x  and  y  directions,   c  x  i,j  ,   c  y  

i,j   are the positions of the sensor in 
the  x  and  y  directions, respectively, and   r z    is the magnifica-
tion factor for the 3-D reconstruction at depth position (z).  
E I  DoP  i,j   ( .  )  indicates the degree of polarization image calcu-
lated from the Stokes parameters.   ξ   i,j  (x, y)  ∈ {0, 1}  is a binary 
variable defined as

  ξ   i,j  (x, y)  =  
{

 1,  if De p   i, j  (x +   
 c  x  i, j 

 ___  r z     , y +   
 c  y  

i, j 
 ___  r z    )  > THR    

0,
  

 otherwise,
     

 (28)

where Dep       i, j  (.) is the depth map obtained for the (i, j)      th   ele-
mental image from the visible spectrum by using the depth 
estimation method [(2) and (3)] [113]. A known reconstruc-
tion depth threshold (THR) is introduced to separate the 
depth position between the occlusion and the target for each 
3-D point.  K  is the total number of elemental images used in 
reconstruction, i.e.,  K =  ∑ 

i,j
    ξ   i, j  (x, y )  .

We assume the occlusion is a convex and Lambertian 
surface. By setting the depth threshold (THR), the degree 
of polarization components measured from the light 
reflected by the occlusion can be removed for the 3-D 
reconstruction. The reconstructed image provides accu-
rate polarization characteristics corresponding to the 
object surface. As the majority of object surfaces can be 
classified based on their electrical properties (such as 
metal and dielectric), and the polarization property var-
ies for materials between the metallic and nonmetallic 
surfaces [114], 3-D polarimetric imaging may be help-
ful for material inspection and classification, industrial 
inspection and target segmentation, etc. [115].

Besides the polarimetric characteristic, some materials 
can be identified from their various spectral reflection signa-
tures. By implementing the multispectral integral imaging 
method, specific materials such as vegetation can be identi-
fied due to having a high NIR spectrum and a relatively low 
visible band reflectance. The k-means clustering algorithm 
[116], [117] is used in MOSIS 2.0 for target segmentation by 
minimization of the cluster sum of squared Euclidean dis-
tances. The minimization problem is

  min  
C
      ∑ 

i=1
  

k
    ∑ 

  x j  ∈ C i  
   D   2  (  x j   ,   μ  i   )    (29)

where  k  is the number of clusters (classes),   C i    represents 
the set of data points that belong to the   i   th   cluster,   μ  i    is the   
i   th   cluster centroid, and   D   2  (  x j   ,   μ  i   ) is the squared Euclidean 
distance between   x j    and   μ  i   . Edge detection algorithms can be 
further applied to outline the detected objects [118], [119]. 
With MOSIS 2.0, 3-D object recognition, including material 
properties inspection, can be performed simultaneously. 
The multidimensionally integrated visualization of a scene 
may reveal more information to improve imaging under-
standing and information extraction.

B. Experimental Results for MOSIS 2.0

This section describes the experiments we have per-
formed for the proposed MOSIS 2.0. A color board level 
camera (EO-2013BL) [120] was fixed on a translation stage 
for multidimensional sensing with synthetic aperture integral 
imaging. The 3-D scene includes: 1) A pair of dice with simi-
lar size and color, but different materials placed at 370 mm 
from the camera; 2) an occlusion set in front of the dice at 280 
mm; 3) a background containing camouflage (plastic) foliage, 
and real (vegetation) foliage at 510 mm. Fig. 24 illustrates the 
sensing system and the 3-D scene used in the experiments.
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Fig. 25(a) shows the quantum efficiency of the CMOS 
camera. For multispectral imaging, a NIR cutoff filter was first 
added to the sensor with a cutoff wavelength of 650 nm, so that 
only the visible spectral range can pass through and be recorded. 
To capture the NIR band, the cutoff filter was replaced by a 
NIR-pass filter (Hoya R72) which blocks the visible band. The 
transmission curve of this filter is shown in Fig. 25(b).

A classical polarization estimation method [44], as dis-
cussed in Section IV-B, was implemented to measure the 
Stokes parameters in our experiments. The camera array 
for the synthetic aperture integral imaging pickup process 
is implemented using a moving single camera and includes 
a total of 36 ( 6 × 6 ) lateral positions, with a camera 
period of 5 mm. The resolution of each elemental image is  
1200 (H)  × 1600  (V) pixels and the camera focal length 
is 8 mm. Fig. 26(a)–(d) illustrates the multidimensional 
elemental images corresponding to the visible spectrum, 
NIR spectrum, measured Stokes parameters of the pola-
rimetric characteristics, and the depth, respectively. The 
multidimensional elemental images provide different per-
spectives of the scene. Fig. 27(a) is the 3-D reconstructed image at 370 mm, 

where the dice are in focus. Compared with Fig. 26(a), the 
occlusion is significantly mitigated, and features related 
to the object surface can be extracted for object recogni-
tion. In the experiments, 26 true class (the surfaces of a 
die) and 48 false class (trees, other objects, background, 
etc.) images were used as the training data for the SVM 
model classification. The dice in the reconstructed image 
can be recognized corresponding to the highest two estima-
tion probabilities from SVM. The red boxes visualized in  
Fig. 27(a) indicate the windows corresponding to the rec-
ognized targets.

Suppose prior information is given in the sense that the pair 
of dice is made of metallic and nonmetallic materials. However, 
it is difficult to identify the material in the visible wavelength 
range. With the reconstructed degree of polarization image, 
material inspection can be performed. Fig. 27(b) indicates 
the direct 3-D reconstructed result of the degree of polariza-
tion image at the target depth position (370 mm). The polari-
metric characteristic around the right corner of the surface is 
degraded due to occlusion. By using the modified reconstruc-
tion approach [see (27)], the degree of polarization compo-
nents from the occlusion is removed by combining the degree 

Fig. 27. MOSIS 2.0 for 3-D object shape and material inspection 
experiments in the presence of occlusion. (a) 3-D reconstructed 
images at the object planes of 370 mm with target recognition. 
Degree of polarization reconstructed images at 370 mm (b) by the 
conventional reconstruction, and (c) by the modified reconstruction 
method. Distribution of degree of polarization for the target 
surface reflected lights. (d) Left die by the modified reconstruction 
in (c), and (e) right die by the modified reconstruction in (c).

Fig. 26. MOSIS 2.0 for 3-D object shape and material inspection 
experiments in the presence of occlusion. Captured and computed 
multidimensional elemental images.  (a) Visible spectrum and (b) 
NIR spectrum.  (c) Degree of polarization (DoP) computed by the 
Stokes parameters and (d) depth map by the estimation method.

Fig. 25. (a) Quantum efficiency of the board level camera [120]. 
(b) Transmission curve of the NIR-pass filter (Hoya R72) used for 
NIR imaging.
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of polarization elemental images with depth information. In  
Fig. 27(c), the reconstructed degree of polarization image pro-
vides the accurate polarimetric characteristics on the target 
surface.

The degree of polarization histogram within the areas 
of the target surface is then extracted. The distributions of 
the degree of polarization from the reflected lights of the 
left and right detected die are shown in Fig. 27(d) and (e), 
respectively. An additional peak is centered at the degree 
of polarization value around 0.26 in Fig. 27(e). The mate-
rial discrimination between the targets can be performed 
by thresholding with degree of polarization (DoP  = 0 . 18 ).  
Results indicate the reflected light from the right target surface 
has a higher degree of polarization components. As the dielectric 
surface partially polarizes incident light upon specular reflection 
more strongly than the metal surface [121], we can conclude that 
the right die is the plastic one and the left die has a metal surface.

K-means clustering was performed on the NIR recon-
structed 3-D images at 510 mm for the segmentation 
between vegetation and plastics in the background. The out-
line of the clusters was extracted by using the sobel edge 
[122] operator for both polarimetric and multispectral visu-
alization. Multidimensional visualization with 3-D object 
recognition and material inspection can be integrated for 
enhancing image understanding and information extrac-
tion. In Fig. 28(a), the red boxes highlight the recognized 
objects at 370 mm, the green outline sketches the surfaces 
with higher degree of polarization, indicating the presence 
of a dielectric material surface. Fig. 28(b) is the visualiza-
tion result at 510 mm. The real foliage is pulled out from the 
plastic ones using the NIR information.

V III.  DY NA MIC MOSIS IN 
MICROSC A LES FOR MICROSCOPY A ND 
MEDIC A L A PPLIC ATIONS

In this section, we present a brief overview of MOSIS for med-
ical applications using dynamic integral imaging systems with 
time multiplexing implemented with liquid crystal devices. 

Three-dimensional integral imaging has found applications in 
3-D endoscopy and can be used for cell identification and clas-
sification. In 3-D endoscopy, a liquid crystal (LC) lens array or 
a LC lens is used to capture objects close to the imaging sensor. 
Furthermore, by using an electrically moveable LC lens array, 
a time multiplex technique called the moving array lenslet 
technique can be used to improve the 3-D image resolution.

A. Three-Dimensional Integral Imaging Microscopy 
for Cell Identification

Integral imaging technology can be employed for 3-D 
microscopy [26], [28]–[31]. The identification of biologi-
cal microorganisms with 3-D integral imaging has been 
proposed in [28]. The schematic setup of integral imag-
ing microscopy for cell identification [28] is shown in 
Fig. 29. Incoherent light passes through a 3-D specimen, 
and it is subsequently magnified by an infinity corrected 
microscope objective to form a real image. For the 3-D 
sensing process, a 2-D sensor records the object from 
various perspectives using the synthetic aperture integral 
imaging technique or a lenslet array. Three-dimensional 
integral imaging reconstruction can be performed by the 
computational reconstruction method. The 3-D recon-
structed images contain depth and profile information 
of the micro object, which can be used for identification 
and classification by statistical pattern recognition tech-
niques [28].

Fig. 29. 3-D integral imaging microscopy for cell identification [28].  
3-D sensing process can also be performed using synthetic aperture 
integral imaging technique.

Fig. 28. MOSIS 2.0 for 3-D object shape and material inspection 
experiments in the presence of occlusion. Multidimensionally 
integrated visualization results. (a) 3-D reconstruction at 370 mm. 
(b) 3-D reconstruction at 510 mm.
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B. Three-Dimensional Integral Imaging with 
Endoscopy

1) Three-Dimensional Endoscopy Using a Hexagonal Liq-
uid Crystal Lens Array: The conventional stereo 3-D endo-
scopes consist of double image sensors with double lenses. 
This configuration may lead to a relatively large physical 
size (about 10 mm) and has the limitations of stereo endo-
scopic systems. A liquid crystal (LC) lens array has been 

developed for 3-D sensing with a single sensor based on the 
integral imaging technique [32], [123]. It can be applied for 
3-D mode by simply mounting the LC lens array in front 
of the conventional 2-D endoscope, which has the same 
diameter as the 2-D endoscope lens (less than 1.4 mm). 
Details of the fabrication process of the LC lens array are 
discussed in [32]. Fig. 30(a) shows the pattern of the LC 
lens electrode with a hexagonal arrangement. An inde-
pendent voltage level can be applied to each lens in the 
array. The hexagonal convex-ring electrodes and its magni-
fied image are illustrated in Fig. 30(b). Fig. 30(c) depicts a 
3-D endoscope with the embedded hexagonal convex-ring 
electrode LC lens which is placed in front of the endoscope 
[32]. This electrode lens produces a parabolic-type electric 
field distribution, and the focal length can be shortened 
to a value less than 2.5 cm. Thus, the 3-D endoscope can 
be used to acquire objects close to the LC lens for medical 
applications.

Fig. 31 illustrates experimental results of biological 
samples captured by the 3-D integral imaging endoscope.  
Fig. 31(a) and (b) shows the images with 2-D and 3-D topog-
raphy. The images without and with focusing of the LC 
lenses are shown in Fig. 31(c) and (d), respectively.

2) Two-Dimensional/Three-Dimensional Adjustable Endos-
copy and Axially Distributed Sensing Using Electrically Con-
trolled Liquid Crystal Lens: A multi-functional liquid-crystal 
lens (MFLC-lens) is demonstrated for 2-D and 3-D switch-
able and focus tunable function without any mechanical 

Fig. 32. (a) Top view of the electrode patterns and cross section 
of the multi-functional liquid-crystal lens (MFLC-LC) lens cell 
for a 2-D/3-D tunable endoscope. The experiment results of the 
interference pattern using (b) 2-D and (c) 3-D mode [123].

Fig. 31. Biological samples captured by the 3-D endoscope. (a) 2-D 
and (b) 3-D surface topography, and the (c) nonfocusing and (d) 
focusing image of biological sample captured by using the LC lenses.

Fig. 30. (a) Diagram of the Indium tin oxide (ITO) electrode. (b) 
Manufactured hexagonal liquid crystal micro lens array and the 
magnified image of the hexagonal electrodes. (c) Example of a 3-D 
endoscope where the electrode liquid crystal lens in its hexagonal 
convex form is located just in front of the endoscope [32].
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