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Abstract:  Threedimensional (3D) imaging systems have been recently
suggested for passive sensing and recognition of objects in photon-starved
environments where only a few photons are emitted or reflected from the
object. In this paradigm, it is important to make optimal use of limited
information carried by photons. We present a statistical framework for 3D
passive object recognition in presence of noise. Since in quantum-limited
regime, detector dark noise is present, our approach takes into account the
effect of noise on information bearing photons. The model is tested when
background noise and dark noise sources are present for identifying a target
in a 3D scene. It is shown that reliable object recognition is possible in
photon-counting domain. The results suggest that with proper translation
of physical characteristics of the imaging system into the information
processing algorithms, photon-counting imagery can be used for object
classification.
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1. Introduction

Photonsare considered the basic carriers of optical information in the context of imaging sys-
tem. However, a photon’s behavior is governed by principles of quantum physics [1]. This
makes it difficult to rely on an individual photon or even a small number of them for reliable in-
formation transfer. Another stage of indeterministic process occurs in the detection stage where
the photons are converted into electrons and counted using electronic circuitry [2]. Fortunately,
there is an abundance of photons in most scenarios which has resulted in sensors, imaging sys-
tems and image processing algorithms to operate around statistical properties of information
bearing photons. However, there are a number of benefits to systems that can perform various
high level tasks such as visualization, object recognition and classification with limited photons.
Many of classical object recognition algorithms operate on images that are formed using
tremendous number of photons [3—7]. These algorithms have also been explicitly adopted for
three dimensional imaging systems [8, 9]. The optimality of such algorithms, however, may
not carry over if these methods are extended directly to the photon counting regime due to
the quantum-limited nature of the imagery. Thus, a new class of automatic object recognition
problems arise within the context of photon-counting image sensing [10, 11]. In fact, three-
dimensional, multi-perspective imaging systems along with conventional linear and nonlinear
matched filters have been applied to photon counting object recognition [12,13]. The methods
of statistical sampling theory have also been investigated for such problems [14]. Photon count-
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ing image fidelity has also been studied from an information theory point of view [15]. To the
bestof our knowledge, there has been no study on the effects of background and dark noise on
object recognition performance in photon counting domain.

In this paper, the maximum likelihood decision theory is used for object recognition in 3D
photon-counting imagery where the ratio of object photons to dark counts is less than one. Un-
like conventional intensity images, photon-counting images with very few (50 or less) photons
contain many pixels that register no counts at all. A typical matched filter [16], for example,
would not consider such pixel as information bearing. Nevertheless, the absence of photon
counts, by itself, conveys information about the object which is exploited in the present frame-
work. This is the key difference between the proposed method with prior art which makes it
more robust to background and dark noise sources.

The rest of the paper is organized as following: in Section 2, a brief review of multi-view im-
age sensing and reconstruction is presented. In Section 2.1, the disjoint object and background
model is combined with quantum-limited photo-detection principles to model realistic photon-
counting imagery including dark noise. Section 3 represents the maximum likelihood based
pattern recognition algorithm, while Section 4 contains experimental results and performance
evaluation of the proposed method. The paper concludes in Section 5.

2. Multi-View Photon-Counting 3D Sensing

Three dimensional (3D) passive imaging and display systems using multiple sensors has been
extensively studied [17—24]. The image registered by each sensor is commonly referred to as an
elemental image. Multiple image sensors can be used in a grid, or a single sensor can sequen-
tially scan and collect the images while moving on a platform (also known as synthetic aperture
integral imaging [25]) [see Fig. 1]. In either method, angular information of the rays are en-
coded in the relative lateral shift of ray-sensor intercept between multiple sensors. Having both
direction and intensity information of rays emanating from the object, one can computationally
reconstruct the scene at a desired distance from the sensor array using back-projection [26].

() Planes
Fig. 1. lllustration of multi-view imaging system.
Let us consider the one dimensional notation of ikt photon-counted elemental image

beRy = {r, :i=1...M}, whereM is the total number of pixels in each elemental image. We
show the back-propagation of such elemental image at distzaR 1%, which according to
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back-propagation based reconstruction can be written as:
R 1= {n *P:i=1...m}, 1)

in which p= pf/uzis the pickup grid pitch |§) normalized by sensor pixel pitchu) and
magnification (zf) [see Fig. 1].

A point in the object space at distanzean be reconstructed by integrating its associated
image pixels on all sensors, that is for ihé object space point at distanz@ne has R12=
K, r'k_kp. The collection of all points on plare= z, represent the light field distribution in
the object space at that particular plane, Re*= {R' =1 M}. Similarly, the light field
distribution in 3D object space can be reconstructed mtermittent planes, such that:

R={R1%:q=1...Q} @)

2.1. Photon Counting Imagery Model

When an object is present in non-obstructing clutter, the clutter can be considered as spatially
disjoint background noise. Such models appear frequently in image-based pattern recognition
problems when an object is to be detected or recognized in presence of spatially disjoint back-
ground noise [27]. The advantage of this model for recognition purposes is that it allows for the
object and background pixels to be treated independently based on their respective available a
priori knowledge.

We extend this model to 3D imaging systems and particularly apply it to quantum-limited
(photon-counting) imaging scenarios. In addition to the disjoint background noise, in quantum-
limited imaging conditions, the number of thermally excited (dark) electrons in detector arrays
can be comparable to, or exceed, photo-electrons [28]. In such case, it is essential to model and
take dark noise into account in pattern recognition problems using quantum-limited imagery.

Dark electrons are predominantly generated by thermal excitation within defective regions in
silicon crystal [2]. We assume a uniform defect distribution among sensors’ pixels [29]. For an
easier presentation, we associate an equivalent irradipfic®, each pixel such that statistics
of dark counts is preserved. Therefore, the resulting irradiancedgident on the-th pixel
of k-th sensor in a multi-view imaging system can be modeled as a combination of object (s),
background (g) and dark-count equivalent{nirradiances as following:

rc = 0.8+ ng] W+ [N, +na] (1—w), @)

in which one dimensional scripted notation is used for brevity. Ah#pdenotes a binary win-

dow function that defines the support of the objecktin elemental image so thej is unity

within the object boundaries and zero elsewhere. Note thais different for each elemen-

tal image and is known a priori as part of reference object information. Likewise, background
noise can be different in each elemental image due to varying sensor viewpoints. In addition,
a accounts for the potential difference between unknown object and reference irradiances.
Throughout this paper, the pre-superscript, post-superscript and post-subscript for each symbol
denote object class, pixel index and signal source, respectively. For exdm{ptdﬁnotes the

i-th pixel of a j-th class object support function as seen filoth elemental image.

In general, inherent stochastic fluctuations of irradiance can influence the statistical proper-
ties of photo-counts, which can result in non-Poissonian photo-count distributions. However, it
can be shown that for polarized thermal radiation, when the count degeneracy parameter ap-
proaches zero, the probability distribution of photo-counts approaches Poisson distribution [1].
In this case, the number of detected photognsinri-th pixel is a discrete random variable
whose mean is related to irradiancg of the light impinging on that pixel and follows Poisson
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distribution as [30]:
o (r)Meh
Pr(ri=m) = ml (4)
In fact, each term in Eq. (3) represents the rate for a Poisson process.

Intensity images can be used to simulate photon-counting imagery [13] since recorded inten-
sity on a pixel is related to the mean number of photons impinging on each pixel. In simulating
photon-counting imagery, one can control the total number of photo-counts in all elemental
images combined\ph, by using normalized irradiance as [13]:

S = Nonli/ ZZIL ©)

wherel' is the recorded intensity &th image pixel.

3. Pattern Recognition with 3D Photon-Counting | magery

In the realm of statistical decision theory [31], each possible state (or class) is represented by
a hypothesi$d;. Given the photon-counting imagery, the maximum-likelihood (ML) decision
criterion is to choose between one of the hypothesis such that an objective function (e.g. prob-
ability of error) is minimized. In a binary classification probleHy, is selected if object 1 is

more likely to have produced the observed photon-counting data. For mathematical brevity, we
assume that all object classes are equally likely and that the cost of error is the same for all
misclassifications. Given a photon counting dataReta convenient way to use ML decision
theory is to calculate the likelihood ratié(.), between the two classes and make decisions
based on the outcome [30]:

Z(R[H1) 21

“R)= ZRiy) -

(6)
where.#(.) denotes the likelihood function.

As described in Section 2, the multi-view photon counting imagery can be used to reconstruct
the object space in 3D. The same methodology can be extended to quantum-limited imaging
conditions. The likelihood function of the reconstruction space under hypotHesian be
expanded as:

Q
Z(R|Hj;a) =[] Pr(R1% |Hj;a)

I
Q K
[ []Pr(R« 1 [Hj;a)

g=1k=1

Q K M KB
= [ [11]Prenc P @

q

where t; is the discrete count random variable associated with pieek-th elemental image.
The innermost product in Eq. (7) is & pixels of each elemental image, the second product is
on set ofK elemental images and the outermost product iQ@aconstruction planes.

Note that the disjoint object and background model in Eqg. (3) can be used to rewrite the
probability density of each point in space as:

o S -
Pr(r *PIHj; @) = Prry “PIHj; )™ x Pr( PRy @)t (®)
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in which the first product series is on counts within object support and the second product series
is that of background. The latter is irrelevant to the recognition problem and since it is bounded,
we substitute it with 1 and treat it as a benign term.

From Egs. (3) and (4), it is evident that within the object suppok-tf elemental image,
the conditional density of the number of countsifth pixel, r‘k, follows a Poisson distribution
with the rater] = a.)s, +ng, with j denoting the class hypothesis, i.e.

nHj,a ~ Z(a.js +nq) for w, =1, 9)

where Z(.) is the Poisson transformation following the form of Eq. (4). Combining Egs. (8)
and (9) and substituting in Eq. (7), and taking the logarithm yields:

log.Z(RHj; a) zilw'k{ ‘s‘k nd+rklog Js{<+nd —Iogr‘k} (10)
1k 1i

wherei =i — pkfor conciseness. The log likelihood in Eq. (10) can be calculated based on the
a priori reference object normalized irradianceaifslw), sensor’s characteristic dark count rate

(ng) and total counts registered at each pixel of the sensor (r). Note that unlike correlation based
techniques, the likelihood in Eq. (10) would penalize a high energy background if the object is
not present or expected in the scene, i.e. wBege 1 butr' > 0. This reduces the false positive

rate and improves the recognition performance.

Since the object irradiance is only known to be a scalar multiple of the reference object
irradiance, we set to zero the partial derivative of Eq. (10) with respexttofind its estimate
- P Q KM ./ Jid .

——log.Z(R|Hj;a) =0= z ZZle'k — KX __id | =0 (11)

ga E&ic a.ls —ny
From Eq. (11) the solution fofr is that of a high-order polynomial which does not yield a
closed form expression. However, for small enough dark najse; s, & can be simply found
as:
& — ¥ ki Wil

Zq,k,f JWIkJ% 7

which can be calculated separately and substituted forEg. (10). Ifng > s, one can calculate
& by applying numerical non-linear solvers, such as Newton’s method, on Eq. (11). Note that
only pixels with nonzero counts need to be taken into account to find a solutiariridgq. (11).
In photon counting domain, only a small number of pixels are expected to report counts, which
in turn simplifies calculation ofr.

Given a set of photon counting elemental images which include both photon-counts as well
as dark-counts, one can calculate the log-likelihood in Eq. (10) for all object class hypotheses
j=1,2,...,J. In case of the binary classification between two distinct objects, the labeling
strategy based on the likelihood ratio in Eq. (6) can be rewritten with log-likelihood values.
The resulting decision rule is:

(12)

H
log-Z(R|Hy; &) zllog.,%(R|H2;a). (13)
Ha

The computational complexity for calculation of Eq. (10Dig1) wheren represents the total
number of pixels that belong to the object in all images. Note that in contrast to conventional
intensity images that have a large number of 8 or 12 bit pixels, photon counting images are
the outcome of a Poisson process [Eq. (4)] with very low number of incident photons. Such

#133500 - $15.00 USD  Received 16 Aug 2010; revised 5 Nov 2010; accepted 17 Nov 2010; published 2 Dec 2010
(C) 2010 OSA 6 December 2010/ Vol. 18, No. 25/ OPTICS EXPRESS 26455



images typically require only 1 or 2 bit pixel elements for detection. This results in substantially
reducechumber of non-zero pixels in the image and directly translates into reduced storage and
computational requirements.

4. Experimental Results

In order to evaluate the performance of the proposed method, a multi-view 3D imaging system
is used to capture toy models. The resulting images are normalized [see Eq. (5)] and trans-
formed to quantum limited imagery through Poisson transformation [see Eq. (4)]. Dark noise is
simulated and added to the photon-counting images per Section 4.1. The algorithms presented
in Section 3 are applied to determine the performance of classification through Monte-Carlo
simulations. The results are demonstrated in terms of Fisher ratio.

4.1. Multi-View 3D Imaging

Two similar toy truck models are chosen as reference objects (see Fig. 2). Both objects fit in a
rectangular box of approxmately 3«1 x1 and have similar features and shape. The blue
truck in Fig. 2(a) is taken to be the true class while the white truck in Fig. 2(b) is assigned to be
the false class object.

(b)

Fig. 2. Reference objects used in the experiment. (a) True class (blue truck), and (b) false
class (white truck). Objects share similar shape and features.

Using a multi-view imaging system, as shown in Fig. 1, a single sensor scans the pickup
plane inan 11x11 grid, and 121 elemental images of both reference objects are recorded.

The horizontal and vertical sensor pitches pre= 16 mm andpy = 10 mm respectively and
the focal plane size, i.e. sensor size, is 24x36 mm with pixel size-efLOum. The imaging
optics has a fixed focal length of 24 mm wit¥ = 5.4. For each elemental image the object
supportwy is extracted by thresholding. The reference objects are imaged under controlled
illumination against a dark background. Note that the unknown input scenes need not to be
imaged in the same illumination condition and can include background noise of arbitrary pattern
and brightness [see Eq. (11)]. As unknown input objects, the same two objects are presented to
the imaging system in a different pose (comparing to reference objects) with additional pine-
tree foliage background. Figure 3 illustrates 16 (out of 121) views of one of the objects.

Intensity images of the unknown scene (Fig. 3) are used to generate photon-counting ele-
mental images according to the Poisson detection model described in Section 2.1. Dark counts
are also simulated and added to the photon-counts according to Eq. (3) and (4). Figure 4 illus-
trates how a single view of the scene is generated from its corresponding intensity image. This
process is repeated for all elemental images to create multi-view photon-counting image set.

The photon-counting elemental images can be used to reconstruct the objectR5pase,
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Fig. 3. 4x4 subset of the total 11x11 elemental images captured from true (blue) class.

describedn Section 2. The volumetric reconstruction for both photon-counting imagery and
reference objects’ 3D images are generated using Eq. (2) based on which Eq. (10) is used to
find the log likelihood with respect to both object hypotheses.

4.2. Recognition Performance

The performance of the proposed photon-counting 3D object recognition is tested under two
different scenarios. In both, background noise is present in the scene containing the unknown
object. In the first scenario, dark noise is disregardedy.es 0, and the reconstructed photon-
counting 3D image of the object only contains the photo-counts. In the second scenario, sensors
are assumed to have a fixed dark count rate as a result of which the total dark cqupts (N
increase proportional to the total photon counts,JNIn both cases, the illumination conditions

are similar, thusx is set to 1.

To quantify the recognition performance in ideal conditions, lets consider the case where
background noise is present but no dark counts are generated at the detector. Photon-counting
images of both true and false class objects in background noise are generated 500 times through
Monte Carlo simulation based on experimentally captured elemental images. At each step, the
likelihood of the photon-limited 3D reconstruction is computed according to Eq. (10) with
respect to both trudi;, and falseH- class reference objects.

The log likelihood ratio in Eqg. (13) is then calculated and the difference between the log
likelihoods with respect to the known reference objects, i.e.4¢R|H1) — 109-Z(R|Hy) is
used for classification. This quantity, along with its standard deviation, is plotted in Fig. 5(a)
for various values of total photon coutyp.

In the second scenario, the total number of dark counts increase with available photons de-
tected from the scene. The dark count ratg,js chosen such that the expected number of dark
counts combined for all elemental imagbl, is always 27 times more than that of photon-
counts, i.eNgc = 27Nyh. This results in a constant ratio of object photons to dark counts equal
to 0.037 that is preserved in all experiments. The resulting log likelihood difference and its
standard deviation is plotted in Fig. 5(b).

As the performance metric, Fisher Ratio can be used. Table 1 and Fig. 6 show the associated

#133500 - $15.00 USD  Received 16 Aug 2010; revised 5 Nov 2010; accepted 17 Nov 2010; published 2 Dec 2010
(C) 2010 OSA 6 December 2010 / Vol. 18, No. 25/ OPTICS EXPRESS 26457



Fig. 4. Simulation of photon-counting imagery. Photons are shown in green, dark counts
shavn in red. (a) Full intensity image of real unknown object, (b) detected 191 photons
from intensity distribution of (a) according to Eq. (9), (c) dark frame generated with appx.
5400 counts, and (d) addition of photon image (b) and dark frame (c).

Fisher Ratio for eachNpp, in both scenarios.

Table 1. Discrimination performance between two classes with and without presence of
dark noise. FR is the Fisher Ratio

‘ Nph ‘ 10 20 50 100 200 500 1000 2000

Ngc =0 FR | 71 295 ©50.7 1075 184 5416 8935 2005.6
Ngc | 270 540 1350 2700 5400 13500 27000 54000

FR | 1.9 4.3 9.9 20.7 399 969 2019 405.2

Nac = 27Nph

Although sparse, the information captured from an object using a 3D photon counting imag-
ing system provides one with means for object recognition. The likelihood ratio formulation
can be used to process the photon-counting information in a binary classification problem.

As expected, more object photons result in a better discrimination, i.e. a higher Fisher ra-
tio. In our experiments, in the absence of dark counts, an acceptable Fisher ratio of 7.1 can be
achieved even at 10 photons per scene. While with more than 20 photons, the binary classifi-
cation is virtually perfect. In the realistic case of quantum-limited imaging where dark noise is
present, the required number of photons increases to about 50 assuming that the fallacious dark
counts are 27 times more than photon-counts, i.e. object photons to dark counts ratio of 0.037.

5. Conclusion

In this paper, maximum likelihood decision theory is presented for object recognition in photon-
counting imagery containing sparse, quantum-limited information about the object. Back-
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Fig.5. (a) Log likelihood ratio for the blue and white truck in a scene with background noise
(a) without dark counts, and (b) with dark counts varying linearly with photon-counts. True
class is the blue truck.

ground and dark noise sources present in realistic scenes are also considered. The imaging
system used for capturing both reference object and photon-counting imagery is a multi-view
3D imaging system which can capture 3D structure of the object. Experimental results were
demonstrated for binary object recognition at a ratio of 0.037 between object photons and dark
counts. The proposed method makes use of the fact that pixels with zero counts also convey ob-
ject information when it comes to deciding between multiple object hypotheses. This method
can be extended to multiple-class recognition problems.
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Fisher Ratio for Likelihood Based Recognition

2500 .
=% -Ng.=0
- % 'Ndc=27Nph
2000 : X 1
rd
’
k'
,/
o
g 1500 ,’ 1
oc /,
j - ’
(] ’
& 1000 f e |
i X
f”
500 f P |
. ==X
. ==
x -
0 _—\x—— 1 1 1
0 500 1000 1500 2000 2500

Number of Detected Photons (Nph)

Fig. 6. Fisher Ratio increases with number of detected photons. The slope decreases with
increasingdark noise.
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